首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Xue CH  Yin W  Jia ST  Ma JZ 《Nanotechnology》2011,22(41):415603
ZnO/SiO(2) core/shell particles were fabricated by successive coating of multilayer polyelectrolytes and then a SiO(2) shell onto ZnO particles. The as-prepared ZnO/SiO(2) core/shell particles were coated on poly(ethylene terephthalate) (PET) textiles, followed by hydrophobization with hexadecyltrimethoxysilane, to fabricate superhydrophobic surfaces with UV-shielding properties. Transmission electron microscopy and ζ potential analysis were employed to evidence the fabrication of ZnO/SiO(2) core/shell particles. Scanning electron microscopy and thermal gravimetric analysis were conducted to investigate the surface morphologies of the textile and the coating of the fibers. Ultraviolet-visible spectrophotometry and contact angle measurement indicated that the incorporation of ZnO onto fibers imparted UV-blocking properties to the textile surface, while the coating of SiO(2) shell on ZnO prohibited the photocatalytic degradation of hexadecyltrimethoxysilane by ZnO, making the as-treated PET textile surface show stable superhydrophobicity with good UV-shielding properties.  相似文献   

2.
Zinc oxide (ZnO) nanowires have been grown on cotton fabric to impart self-cleaning, superhydrophobicity and ultraviolet (UV) blocking properties. ZnO nanowires were grown by the microwave assisted hydrothermal method and subsequently functionalized with steraic acid to obtain a water contact angle of 150°, showing their superhydrophobic nature which is found to be stable up to 4 washings. UV protection of the resulting cotton fabric was also examined and significant decrease in the transmission of UV range was observed. Self-cleaning activity of the ZnO nanowire coated cotton fabric was also studied and it showed considerable degradation of methylene blue under UV light irradiation. These results suggest that ZnO nanowires could form ideal multifunctional coatings for textiles.  相似文献   

3.
目的 针对普通纺织品材料防水性和防污性较差的问题,制备具有自清洁功能的超疏水涂层纺织品,并研究其性能.方法 以涤纶织物为基材,通过非溶剂诱导相分离法,使用聚偏氟乙烯和疏水纳米二氧化硅复合液在纺织品表面构筑微纳粗糙结构,采用聚二甲基硅氧烷对其进行疏水化处理,获得自清洁超疏水涂层纺织品.采用扫描电子显微镜、X射线能量散射光谱和视频光学接触角测量仪等对其结构和性能进行表征,并通过机械摩擦、洗涤、酸/碱/盐溶液浸渍和紫外光照等方法对其表面超疏水稳定性进行考察.结果 当聚偏氟乙烯质量分数为2%,疏水纳米二氧化硅质量分数为0.4%,聚二甲基硅氧烷质量分数为1%时,制备的纺织品的表面接触角可达(162.2°±0.8°),滚动角达(2.0°±0.4°),具有优异的超疏水自清洁效应;经72 h酸/碱/盐溶液浸渍、196 h紫外光照、2500次摩擦和120次家庭水洗后,其表面接触角仍大于150°,表现出优异的超疏水稳定性.结论 采用简便的非溶剂相分离法制备的涂层纺织品具有优异的自清洁性能,并且其超疏水性能具有机械耐久性和化学稳定性,有望应用于纺织材料包装领域.  相似文献   

4.
In the present study photoluminescence behavior of ZnO and ZnO@CdS core–shell nanorods film has been reported. ZnO nanorods were grown on the glass coated indium tin oxide (ITO) surface by seeding ZnO particle followed with nanorods growth. These nanorods were coated with CdS by chemical bath deposition techniques to have ZnO@CdS thin film and further annealed at 200 °C for their adherence to the ITO surface. The coating was characterized for surface morphology using SEM and optical behavior using UV–visible spectrophotometer. Energy dispersive X-ray (EDX) was used for compositional analysis and time resolve photoluminescence decay for excitons life time measurement. The absorption spectrum reveals that the absorption edge of ZnO@CdS core–shell heterostructure shifted to 480 nm in the visible region whereas ZnO nanorods have absorption maxima at 360 nm. The excitons lifetime of ZnO@CdS was found to be increased with the thickness of the CdS layer on ZnO nanorod. These ZnO@CdS core–shell nanostructures will be of great use in the field of photovoltaic cell and photocatalysis in a UV–visible region.  相似文献   

5.
Polymer nanocomposites offer possibility of developing a new class of nanofinishing materials for textiles with their own manifold of structure property relationship. Approaches to modify the polymer nanocomposites by various inorganic substances can lead to a huge number of additional functionalities which are increasingly demanded by the textile industries. In the present work, zinc oxide nanoparticles were prepared by wet chemical method and ZnO–PMMA nanocomposites were prepared by dispersing the ZnO nanoparticles in solution of poly(methylmethacrylate) (PMMA) and applied on polyamide fabrics by padding. The aims are to impart superhydrophobicity and UV protection function to the polyamide textile surface and the functional properties of coated fabrics were studied. The nanofinished polyamide fabrics showed superhydrophobicity of about 163°. The results also showed that the impregnation of fabrics with ZnO–PMMA nanofinishings also enhanced the protection of polyamide fabrics against UV radiation.  相似文献   

6.
The synthesis of II-VI semiconductor (ZnOrod@SnO2) nanocomposite materials with core-shell morphology has been reported. ZnO nanorods were grown by hydrothermal technique using zinc acetate as the reactant. SnO2 was coated on the nanorods by a simple technique of colloid chemistry. The formation of tin dioxide shell on the ZnO nanorods was confirmed by the TEM images of the resultant materials. The formation of the nanocomposite was also supported by XRD pattern. The effect of tin dioxide shell on the optical properties of ZnO was investigated by photoluminescence spectroscopy and Raman spectroscopy.  相似文献   

7.
In this paper, we reported the preparation of ZnO/ZnS core/shell nanocomposites by sulfidation of ZnO nanostructures via a simple hydrothermal method. The precursors of bare ZnO nanoparticles and ZnO nanorods were synthesized by a surfactant-assisted hydrothermal growth. The structural, morphological, and element compositional analysis of bare ZnO nanostructures and ZnO/ZnS core/shell nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy techniques. The XRD results indicated that the phase of bare ZnO nanoparticles and ZnO nanorods was wurtzite structure, and the phase of coated ZnS nanoparticles on the surface of bare ZnO nanostructures was sphalerite structure with the size of about 8 nm. Photoluminescence measurement was carried out, and the PL spectra of ZnO/ZnS core/shell nanocomposites revealed an enhanced UV emission and a passivated orange emission compared to that of bare ZnO nanostructures. In addition, the growth mechanism of ZnO/ZnS core/shell nanostructures through hydrothermal method was preliminarily discussed.  相似文献   

8.
Large-scale beta-MnO2/SiO2 core-shell nanorods were synthesized by hydrolysis process. The product was characterized by XRD, EDS, SEM and TEM. The thickness of the SiO2 shell layer is about 3 nm approximately 5 nm, which can be tuned by changing the amount of tetraethyl orthosilicate (TEOS) and the reaction time. The dielectric properties of the synthesized core-shell nanorods at the temperature range from 373 K to 773 K in X-band were investigated in detail and the mechanism of the dielectric response was discussed. The dielectric loss of the SiO2-coated MnO2 nanorods at 773 K was about twice than that at 373 K. The high dielectric loss is mainly attributed to the interfacial polarization and the electromagnetic impedance match between the SiO2 shell layer and MnO2 core layer. The quantitative formula between the permittivity of beta-MnO2/SiO2 core-shell nanorods and the thickness of the SiO2 shell is established, which can be used to tune the dielectric properties of the core-shell nanorods through controlling the thickness of the SiO2 shell layer.  相似文献   

9.
Undoped and aluminium (Al)-doped zinc oxide (ZnO) nanorods have been synthesized by electrochemical route. The synthesized materials have been characterized by X-ray diffraction, UV–visible spectrometer and scanning electron microscope. The Al-doped ZnO nanorods have been coated with polyvinyl alcohol. Current–voltage characteristics have been investigated in dark and under UV-light illumination. Aluminium doping in ZnO increase its electrical conductivity and further polyvinyl alcohol coating on Al-doped ZnO increase UV sensitivity of the material. Response and recovery time of Al-doped ZnO and PVA-coated Al-doped ZnO nanorods have been recorded. PVA-coated Al-doped ZnO nanorods shows very fast response and recovery time of 10 s in comparison to uncoated ZnO (20 min) nanorods.  相似文献   

10.
In this work, a facile and scalable acetylene decomposition method was employed to synthesize carbon-coated ZnO (ZnO@C) nanorods. The characterization of morphology and structure analysis demonstrate that ZnO nanorod was well coated by an amorphous carbon shell with a thickness of about 20 nm. Comparted with ZnO, ZnO@C exhibit significantly enhanced microwave absorption properties. The effective absorption bandwidth with RL values exceeding –10 dB can reach 5.3 GHz for ZnO@C with a matching thickness of 2.5 mm. The excellent microwave absorption arose from enhanced dielectric loss caused by interfacial polarization, dipole polarization and the formation of conductive network.  相似文献   

11.
Functional finishing in cotton fabrics using zinc oxide nanoparticles   总被引:1,自引:0,他引:1  
Nanotechnology, according to the National Nanotechnology Initiative (NNI), is defined as utilization of structure with at least one dimension of nanometer size for the construction of materials, devices or systems with novel or significantly improved properties due to their nano-size. The nanostructures are capable of enhancing the physical properties of conventional textiles, in areas such as anti-microbial properties, water repellence, soil-resistance, anti-static, anti-infrared and flame-retardant properties, dyeability, colour fastness and strength of textile materials. In the present work, zinc oxide nanoparticles were prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent. These nanoparticles, which have an average size of 40 nm, were coated on the bleached cotton fabrics (plain weave, 30 s count) using acrylic binder and functional properties of coated fabrics were studied. On an average of 75%, UV blocking was recorded for the cotton fabrics treated with 2% ZnO nanoparticles. Air permeability of the nano-ZnO coated fabrics was significantly higher than the control, hence the increased breathability. In case of nano-ZnO coated fabric, due to its nano-size and uniform distribution, friction was significantly lower than the bulk-ZnO coated fabric as studied by Instron® Automated Materials Testing System. Further studies are under way to evaluate wash fastness, antimicrobial properties, abrasion properties and fabric handle properties.  相似文献   

12.
For the first time, aligned ZnO nanorod structured thin films have been synthesized on a glass substrate, which had been coated with an Al-doped ZnO thin film, using the sonicated sol-gel immersion method. These nanorods were found to have an average diameter of 100 nm and an average length of 500 nm, with hexagonal wurtzite phase grew preferentially along the c-axis direction. A sharp ultra-violet (UV) emission centred at 383 nm corresponding to the free exciton recombination was observed in a room temperature photoluminescence (PL) spectrum. The prepared ZnO nanorod structured thin film is transparent in the visible region with an average transmittance of 78% in the 400-800 nm wavelength range and high absorbance properties in the UV region (< 400 nm). The results indicate that the prepared ZnO nanorods are suitable for ultra-violet photoconductive sensor applications.  相似文献   

13.
The performance of dye-sensitized solar cells based on ZnO nanorods and nanoflowers coated with thin shells of TiO2 thin film prepared by sol–gel deposition are described. It is found that shells act as insulating barriers that improve cell open-circuit voltage and short-circuit current density. The superior performance of the ZnO–TiO2 core–shell cells is a result of a radial electron transport within each ZnO nanorods and nanoflowers that decreases the rate of recombination and percolation of the electron in these devices.  相似文献   

14.
采用射频磁控溅射技术和水浴法在SiO2单晶衬底上生长了Zn纳米颗粒/ZnO纳米棒复合材料(Zn/ZnO)。后期热处理促使Zn/ZnO界面之间发生元素相互扩散,直接向ZnO纳米棒中引入额外锌杂质,从而获得了富锌的ZnO纳米棒材料。借助扫描电子显微镜、X射线衍射仪、霍尔测试仪、分光光度计和拉曼光谱仪研究了富锌ZnO纳米棒的形貌、结构以及光电特性。结果表明,所有ZnO纳米棒均呈整齐的六角纤锌矿结构,相比ZnO纳米棒,富锌纳米棒具有相对较差的结晶质量,较好的导电性,较低的透射率和较窄的禁带宽度。拉曼光谱研究表明,通过扩散法向ZnO纳米棒引入的锌间隙相关施主缺陷,是其拉曼光谱中出现异常的275 cm-1振动模的来源,也是导致富锌ZnO纳米棒微结构以及光电特性显著变化的主要原因。  相似文献   

15.
ZnO particles with a size range of 50–150 nm were coated with polydimethylsiloxane (PDMS) with a thin film thickness of 3–4 nm using a simple ambient-pressure chemical vapor deposition method. Surfaces consisting of the PDMS-coated ZnO nanoparticles were found to be superhydrophobic with a water contact angle >160°. The superhydrophobicity was sustained in the presence of UV light. Photocatalytic activity and photocorrosion of ZnO were nearly completely quenched in the presence of PDMS-coating. It is suggested that our PDMS-coating can be of potential interest for the application of ZnO in UV protection agents and energy and electronic devices.  相似文献   

16.
ZnO nanorod arrays were grown on a flexible Kapton tape using microwave-assisted chemical bath deposition. High crystalline properties of the produced nanorods were proven by X-ray diffraction patterns and field emission scanning electron microscopy. Additionally, the photoluminescence spectrum showed higher UV peaks compared with visible peaks, which indicates that the ZnO nanorods had high quality and low number of defects. The metal-semiconductor-metal (MSM) configuration was used to fabricate UV and hydrogen gas detectors based on the ZnO nanorods grown on a flexible Kapton tape. Upon exposure to 395 nm UV light, the UV device exhibited fast response and decay times of 37 ms and 44 ms, respectively, at a bias voltage of 30 V. The relative sensitivities of the gas sensor made of the ZnO nanorod arrays, at hydrogen concentration of 2 %, at room temperature, 150 °C and 200 °C, are 0.42, 1.4 and 1.75 respectively.  相似文献   

17.
ZnO纳米材料异质结是构筑高性能紫外光电探测器的有力候选之一。本工作中, 设计并制备了一种新型ZnO纳米棒/ZnCo2O4纳米片异质结, 研究了其电学性能及光电探测性能。使用油水界面自组装, 将ZnCo2O4纳米片在ITO玻璃上组装为均匀的薄膜; 通过调控ZnO种子层厚度, 在ZnCo2O4纳米片薄膜上水热生长了取向一致、密度适中的ZnO纳米棒阵列, 获得了高质量的ZnO纳米棒/ZnCo2O4纳米片异质结。该异质结具有优良的整流特性, 整流比达到673.7; 其工作在反偏状态时, 光暗电流比超过2个量级, 紫外-可见判别比为29.4, 在光电探测中有良好的波长选择特性。研究表明, 该异质结有潜力应用于构筑高性能紫外光电探测器。  相似文献   

18.
ZnO:LiAc nanopaticles were successfully synthesized though a colloidal-sol technique in nonaqueous solution under ultrasonic irradiation. The luminescent characteristics from blue to red can be tunable by varying [Li]/[Zn] ratios. The possible reason of tunable luminescent characteristics can be attributed to the increase of density of oxygen vacancies caused by Li+ adsorbed in the surface of magic-sized ZnO nanocrystals based on XRD, zeta potential and XPS results. What's more, it is found that SiO2 shell coated on ZnO:LiAc nanoparticles can improve the surface property of ZnO nanoparticles and enhance the PL emission intensity and optical stability. Due to its excellent luminescent characteristic and optical stability, as-prepared SiO2 coated ZnO:LiAc nanoparticles may be a promising candidate for some applications in high-efficiency low-voltage phosphor, solar cells and biological luminescent labels.  相似文献   

19.
ZnO thin films were fabricated using the spin coating method, ZnO nanowires by cathodically induced sol-gel deposition by the means of an anodic aluminum oxide (AAO) template, and ZnO nanorods with the hydrothermal technique. For thin film preparation, a clear, homogeneous and stable ZnO solution was prepared by the sol-gel method using zinc acetate (ZnAc) precursor which was then coated on a glass substrate with a spin coater. Vertically aligned ZnO nanowires which were approximately 65 nm in diameter and 10 μm in length were grown in an AAO template by applying a cathodic voltage in aqueous zinc nitrate solution at room temperature. For fabrication of the ZnO nanorods, the sol-gel ZnO solution was coated on glass substrate by spin coating as a seed layer. Then ZnO nanorods were grown in zinc nitrate and hexamthylenetetramine aqueous solution. The ZnO nanorods are approximately 30 nm in diameter and 500 nm in length. The ZnO thin film, ZnO nanowires and nanorods were characterized by X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). The NO2 gas sensing properties of ZnO thin films, nanowires and nanorods were investigated in a dark chamber at 200 °C in the concentration range of 100 ppb-10 ppm. It was found that the response times of both ZnO thin films and ZnO nanorods were approximately 30 s, and the sensor response was depended on shape and size of ZnO nanostructures and electrode configurations.  相似文献   

20.
We report a facile solution-based method for the controlled growth of ZnO nanomaterials on an AIN/Si substrate. A ZnO buffer layer was coated on the substrate before growing the ZnO nano-materials. The shape of the ZnO nanomaterials changed from nanosheet to nanorod as the thickness of the ZnO buffer layer increased. Doping of the buffer layer with Ga decreased the average grain size of the ZnO buffer layer, which resulted in the growth of longer and thinner ZnO nanorods on the buffer layer. The UV sensing results of the ZnO nanorod-based device revealed that the aspect ratio of the ZnO nanorods is crucial for enhancing the performance of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号