首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
水煤浆添加剂磺化丙酮-甲醛缩聚物的合成与性能   总被引:5,自引:0,他引:5  
以丙酮、甲醛、亚硫酸钠为原料合成磺化丙酮 甲醛缩聚物型水煤浆分散剂 (SAF),考察了亚硫酸钠用量、醛酮比等因素对水煤浆分散性能的影响,实验研究发现,亚硫酸钠、甲醛和丙酮的最佳摩尔比为n(亚硫酸钠 )∶n(甲醛)∶n(丙酮) =0 4∶2 1∶1 .05。用最佳摩尔比条件下合成的SAF制浆,在投加量为w(SAF) =0 8%时最高定黏浓度达 66% (干煤粉质量分数)。流变性实验研究发现,浆体属于假塑性流体,具有明显的触变性,并且浆体在 100s-1的固定剪切速率下剪切具有较好的抗剪切性。  相似文献   

2.
以丙酮、甲醛及亚硫酸钠为原料,采用磺化缩聚法通过控制缩合剂和磺化剂的用量,合成一系列具有不同分子量和不同磺化度的脂肪族磺酸盐水煤浆分散剂(SAF).神华煤作为一种低阶煤,内在水分含量和氧含量过高,成浆性能较差.采用德国Haake流变仪测定SAF作为分散剂对低阶神华煤制浆的流变性能,结果表明,SAF的分子量和磺化度是影响其分散降黏作用的主要因素.SAF对水煤浆的分散降黏能力优于萘磺酸盐甲醛缩合物系分散剂,适宜的分子量(特性黏度为7.03~10.87)和较高的磺化度(1.64 mmol/g)有利于提高SAF对水煤浆的分散降黏性能.采用Herschel-Bulkley模型对掺SAF的水煤浆浆体的流变曲线进行拟合,研究了SAF的分子量和磺化度对水煤浆流变性的影响.  相似文献   

3.
以精萘、浓硫酸和甲醛为原料,依次经过磺化、水解、缩合三个反应合成了萘磺酸甲醛缩合物(NSF),并获得了各反应的优化条件。结果表明:当2-萘磺酸(2-NSA)产率最大时,磺化反应的优化条件为n(萘)∶n(浓硫酸)=1∶1.15、反应温度160℃、反应时间3 h;水解反应要使1-萘磺酸(1-NSA)的残留量最低优化条件为反应温度115℃、反应时间60 min、n(萘)∶n(水)=1∶2.3,此时1-NSA水解的转化率最高;缩合反应的优化条件为n(萘)∶n(甲醛)=1∶1、酸度30%,反应温度105℃,反应时间2 h,在此条件下2-NSA全部聚合生成NSF。产物NSF的红外光谱(FTIR)和高效液相色谱(HPLC)分析表明,不同条件下获得的NSF都含有丰富的芳环、亚甲基和磺酸基结构;HPLC分析表明,NSF在磺化度、分子量大小和分子的主体结构(线性结构/枝状结构)方面存在差异,这种差异导致NSF在作为水煤浆分散剂时,对降低浆体黏度和提高浆体稳定性方面具有不同的性能;优化条件下得到的NSF在降低浆体黏度方面性能优于市售的萘磺酸甲醛缩合物系分散剂(NX-1),但二者对保持浆体稳定性的能力相当。  相似文献   

4.
以苯酚为原料,通过硫酸磺化与甲醛聚合,再经环氧氯丙烷接枝等反应合成出一种环氧氯丙烷改性磺化酚醛树脂水煤浆分散剂.合成条件为n(苯酚)∶n(浓硫酸)∶n(甲醛)∶n(环氧氯丙烷)=1∶1∶0.7∶1.5,催化剂含量为苯酚质量的0.5%,磺化温度为100℃,聚合温度为65℃.通过静态接触角、流变性及稳定性等测试,研究了分散剂对陕西神华煤的成浆特性,并通过与木素-萘磺酸盐分散剂对比,发现此环氧磺化酚醛树脂分散剂可有效改善煤表面的亲水性,分子中的环氧链能牢固地结合煤表面的疏水基团,并提供了一定的空间位阻效应,有效阻隔了煤粒间的聚集,使煤粒得到均匀分散,起到了降低水煤浆黏度、提高稳定性的作用.  相似文献   

5.
蒋高华  蔡冰  赵江 《广东化工》2014,(18):122+151-122
以亚硫酸钠、丙酮、甲醛为原料合成磺化丙酮——甲醛缩聚物水煤浆分散剂(SAF)。通过三种不同的工艺流程来合成分散剂,通过实验研究发现,0.6 mol/L,50 mL Na2SO3条件下制得的水煤浆分散剂效果最好,具有良好的分散性能,制浆黏度最低,析水率较低,流动性、稳定性都较好,是理想的水煤浆分散剂。  相似文献   

6.
用丙酮、甲醛、无水亚硫酸钠和水通过缩合反应制备了水煤浆分散剂SAF,并将其与木质素磺酸钠(木钠)进行复配,评价了分散剂对宁夏回族自治区羊场湾产煤的成浆性能。以表观黏度1 500 mPa.s为标准,采用复配分散剂(SAF∶木钠=1∶2)制备的水煤浆的最大成浆浓度为71%,而采用SAF、木钠制备水煤浆的最大成浆浓度分别为67%,63%;SAF、木钠和复配分散剂制得的水煤浆48 h均无沉淀产生,而三者制得水煤浆的72 h产生的析水率分别为6.0%,4.2%,2.4%,表明复配分散剂可提高煤的成浆浓度,降低析水率。  相似文献   

7.
以2-萘酚、浓硫酸和甲醛为原料合成了磺化萘酚甲醛(NPF)水煤浆分散剂.首先探讨了分散剂的合成条件对其性能的影响并进行了性质分析;其次,通过NPF与萘系(NSF)分散剂进行复配改善了NSF的稳定性能.结果表明,当甲醛和2-萘酚的配比为0.86:1,聚合温度为130℃,反应时间为2h时分散剂性能最好.用此分散剂,在分散剂用量为0.5%,煤浆浓度为64%时,水煤浆黏度为463mPa·s,分散性能良好.萘系(NSF)水煤浆分散剂中NPF的掺杂量为20%时,水煤浆黏度降低了150mPa·s,7d后析水率下降1.07%,无硬沉淀出现,稳定性提升明显.  相似文献   

8.
以工业甲基萘为原料,通过磺化、水解、缩合与中和反应合成了甲基萘磺酸甲醛缩合物(MNSF),考察了反应工艺参数对产物作为混凝土减水剂的分散性能的影响.结果表明,合成MNSF最优工艺为:n(甲基萘)n∶(浓硫酸)n∶(水解加水量)n∶(甲醛)∶n(缩合加水量)=11∶.25(∶1.25~1.5)0∶.924∶.6;磺化反应温度160~165℃,时间3~3.5 h;水解反应温度110~120℃,时间15~30 min;缩合反应的加醛量与温度是该段影响产品分散性能的主要因素,缩合反应温度110℃,时间4 h;水解前后酸度应控制在30%左右.MNSF在掺量为水泥质量的0.5%时,砂浆减水率达到16%,比萘磺酸甲醛缩合物钠盐(FDN)高4%,抗折和抗压强度与FDN相近.  相似文献   

9.
以工业甲基萘为原料,通过磺化、水解、缩合与中和反应合成了甲基萘磺酸甲醛缩合物(MNSF),考察了反应工艺参数对产物作为混凝土减水剂的分散性能的影响.结果表明,合成MNSF最优工艺为:n(甲基萘)n∶(浓硫酸)n∶(水解加水量)n∶(甲醛)∶n(缩合加水量)=11∶.25(∶1.25~1.5)0∶.924∶.6;磺化反应温度160~165℃,时间3~3.5 h;水解反应温度110~120℃,时间15~30 min;缩合反应的加醛量与温度是该段影响产品分散性能的主要因素,缩合反应温度110℃,时间4 h;水解前后酸度应控制在30%左右.MNSF在掺量为水泥质量的0.5%时,砂浆减水率达到16%,比萘磺酸甲醛缩合物钠盐(FDN)高4%,抗折和抗压强度与FDN相近.  相似文献   

10.
磺化三聚氰胺脲醛树脂合成工艺的研究   总被引:5,自引:1,他引:5  
研究了引入尿素含量较高的条件下 ,磺化三聚氰胺脲醛树脂 (SMUF)的合成工艺影响因素及作为混凝土超塑化剂的应用性能。结果表明SMUF的优化合成条件为 :n(甲醛 )∶n(硫酸 )∶n(三聚氰胺 )∶n(尿素 ) =6∶2∶1∶1 ,羟甲基化、磺化、酸段缩合、碱性重整 4个阶段的反应温度均为 80℃ ,酸段缩聚反应阶段pH为 4 .5 ,时间为 90min。合成的SMUF树脂在用量 0 5 %时 ,混凝土的减水率可达 2 0 %。该工艺与SMF树脂合成相比 ,原料成本降低 35 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号