首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optically transparent packet network controlled by a simple medium access circuit is presented. The system, based on frequency division multiplexing and tunable transmitters, has no internal blocking and is optically self-routing. It provides internal collision-free traffic by allowing access to the network only if the addressed channel (output port) is available. A packet denied access to the network is reflected back to its input port, which is thus informed of the packet status. Therefore, the traffic is not bogged down by acknowledgments between input and output ports. To achieve this result, each input of the network is controlled by a protection-against-collision (PAC) circuit located at a central hub. The PAC circuit uses the packet for probing the energy present in the addressed channel. The resulting signal controls an optical switch connecting the input port to the network. Thus, full optical connectivity is provided between ports controlled by electrical signals derived from simple optical power measurements  相似文献   

2.
The conservative nature of the 802.11 channel access scheme has instigated extensive research whose goal is to improve the spatial reuse and/or energy consumption of a mobile ad hoc network. Transmission power control (TPC) was shown to be effective in achieving this goal. Despite their demonstrated performance gains, previously proposed power-controlled channel access protocols often incur extra hardware cost (e.g., require multiple transceivers). Furthermore, they do not fully exploit the potential of power control due to the heuristic nature of power allocation. In this paper, we propose a distributed, single-channel MAC protocol (GMAC) that is inspired by game theory. In GMAC, each transmitter computes a utility function that maximizes the link’s achievable throughput. The utility function includes a pricing factor that accounts for energy consumption. GMAC allows multiple potential transmitters to contend through an admission phase that enables them to determine the transmission powers that achieve the Nash equilibrium (NE). Simulation results indicate that GMAC significantly improves the network throughput over the 802.11 scheme and over another single-channel power-controlled MAC protocol (POWMAC). These gains are achieved at no extra energy cost. Our results also indicate that GMAC performs best under high node densities and large data packet sizes.  相似文献   

3.
We propose a channel access protocol for single-hop wavelength division multiplexing (WDM) optical networks. Each node is equipped with a fixed-tuned transmitter, a tunable transmitter, a fixed-tuned receiver, and a tunable receiver. The proposed protocol alleviates the drawbacks of a previous protocol [1], e.g., invalid data transmissions that follows receiver collisions and possible acknowledgment packet collisions with header/data packets, while retaining many advantages. As a result, the network performance in terms of throughput and packet delay is improved. Analytical models based on the timing diagram analysis, the continuous-time Markov chain, and the randomization technique are developed to assess the proposed protocol, and are validated through event-driven simulation. The performance is evaluated in terms of channel utilization, mean packet delay, and packet delay distribution with variations in the number of nodes, the offered traffic, the size of data packets, and the network propagation delay. Through numerical results and simulation studies, we show that the proposed protocol achieves better channel utilization and incurs lower packet delays.  相似文献   

4.
We study several models for fixed-size packet/cell switching (e.g., 53 bytes for asynchronous transfer mode) in wavelength routed optical networks with an emphasis on throughput performance analysis. In particular, we examine the associated trade-offs between functionality and hardware complexity. The basic model here is a two-sided “switch” or sorter. Cells generated at user inputs destined for user outputs are allowed to reach their destinations by recirculation or multihop through a fixed wavelength routed optical network a number of times. Using algebraic techniques, we analyze the basic model and its variations that use different types of wavelength translation for their capability to achieve permutations of cells from inputs to outputs. In particular, we showed that when cell-by-cell wavelength translation functionality is allowed, the number of recirculations in the network to achieve all permutations is 3 logW N where W is the number of wavelengths. The resultant normalized per user throughput of 1/3 logW N is close to the conjectured optimal of 1/(2 logW N-1) under the conditions specified in the model. Finally, using another model we show that it is possible to achieve a normalized per user throughput of 1 and we calculate the amount of extra hardware required for this purpose  相似文献   

5.
Throughput bounds are attained for random channel access multichannel code-division multiple-access (CDMA) systems and spread slotted Aloha systems employing multiuser receivers. It is shown that the normalized throughput of these two systems reaches 1.0 exponentially fast in the region r/K<1, where, r is the average number of simultaneous users in each channel in the random channel access multichannel CDMA system and the packet arrival rate in the spread slotted Aloha system, respectively, and K is the maximum number of users which the multiuser receiver can handle at the same time. Therefore, both of the random channel access multichannel CDMA system and the spread slotted Aloha system employing multiuser receivers can achieve perfect throughput while being stable in the region r/K=1-δ, δ>0. The maximum throughput of the random channel access multichannel CDMA systems is found as K-√(1-(1/M))KlogK-O(logK), where M is the number of channels in the system. The maximum throughput is reached when the average number of simultaneous users is rm=K-√((1-(1/M))KlogK))+O(√(K/logK)). The maximum throughput of the spread slotted Aloha systems is K-√(KlogK)-O(log K). The maximum throughput is reached when the packet arrival of Poisson distribution has the arrival rate λm=K-√(KlogK)+O(√(K/logK))  相似文献   

6.
An optical network is too costly to act as a broadband access network. On the other hand, a pure wireless ad hoc network with n nodes and total bandwidth of W bits per second cannot provide satisfactory broadband services since the pernode throughput diminishes as the number of users goes large. In this paper, we propose a hybrid wireless network, which is an integrated wireless and optical network, as the broadband access network. Specifically, we assume a hybrid wireless network consisting of n randomly distributed normal nodes, and m regularly placed base stations connected via an optical network. A source node transmits to its destination only with the help of normal nodes, i.e., in the ad hoc mode, if the destination can be reached within L (L /spl geq/ 1) hops from the source. Otherwise, the transmission will be carried out in the infrastructure mode, i.e., with the help of base stations. Two transmission modes share the same bandwidth of W bits/sec. We first study the throughput capacity of such a hybrid wireless network, and observe that the throughput capacity greatly depends on the maximum hop count L and the number of base stations m. We show that the throughput capacity of a hybrid wireless network can scale linearly with n only if m = Ω(n), and when we assign all the bandwidth to the infrastructure mode traffics. We then investigate the delay in hybrid wireless networks. We find that the average packet delay can be maintained as low as Θ(1) even when the per-node throughput capacity is Θ(W).  相似文献   

7.
In this paper, packet throughput is analyzed and simulated for a show FH/SSMA packet radio network with adaptive antenna array and packet combining in a Rayleigh fading channel with shadowing. The packet throughput is defined as the average number of captured packets per slot. To enhance the throughput performance, an adaptive spatial filtering through adaptive antenna array and a packet combining scheme are employed. As a random access protocol, slotted ALOHA is considered, and synchronous memoryless hopping patterns are assumed. A packet consists of codewords from an (n, k) RS (Reed-Solomon) code. The tap weights of an adaptive processor is updated by RLS (recursive-least-square) algorithm. From the simulation results, it is shown that a pre-processing by adaptive antenna array and a post-processing by packet combining are very effective to improve reception performance of an FH/SSMA network.  相似文献   

8.
Choi  E. Kim  M. 《Electronics letters》1989,25(10):625-626
A novel random multiaccess protocol is proposed for a packet mobile-radio network employing an idle-signal casting multiple-access (ICMA) with/without collision detection scheme. The protocol takes advantage of the channel control scheme to reduce collisions. The authors show significant improvements in terms of maximum achievable throughput.<>  相似文献   

9.
In this paper we analyze the average end-to-end delay and maximum achievable per-node throughput in random access multihop wireless ad hoc networks with stationary nodes. We present an analytical model that takes into account the number of nodes, the random packet arrival process, the extent of locality of traffic, and the back off and collision avoidance mechanisms of random access MAC. We model random access multihop wireless networks as open G/G/1 queuing networks and use the diffusion approximation in order to evaluate closed form expressions for the average end-to-end delay. The mean service time of nodes is evaluated and used to obtain the maximum achievable per-node throughput. The analytical results obtained here from the queuing network analysis are discussed with regard to similarities and differences from the well established information-theoretic results on throughput and delay scaling laws in ad hoc networks. We also investigate the extent of deviation of delay and throughput in a real world network from the analytical results presented in this paper. We conduct extensive simulations in order to verify the analytical results and also compare them against NS-2 simulations.  相似文献   

10.
An analysis of unslotted random-access direct-sequence spread-spectrum multiple-access (DS/SSMA) channels with block forward error correction (FEC) coding is presented. Extending a methodology that was introduced in an earlier paper on unslotted packet code-division multiple access (CDMA) without coding, a procedure for calculating the error probability of an L-bit packet in the variable message length, FEC-coded, DS/SSMA environment is described. This procedure is then used in conjunction with appropriate flow equilibrium traffic models to compute channel throughput. Using BCH block coding as an example, the analytical model is exercised to obtain throughput versus channel traffic curves over a range of code rates, leading to an assessment of maximum achievable throughput and the associated optimum FEC code rate. The results show that the use of block FEC coding provides a significant improvement in the bandwidth-normalized channel throughput (utilization), approaching values competitive with those for comparable narrowband ALOHA channels  相似文献   

11.
Hidden node collision in a contention-based medium access control protocol contributes to poor wireless network performance. This paper extended the Bianchi’s study and introduces a mathematical model that can be used to calculate throughput and delay for the IEEE 802.11 distributed coordination function of a multihop wireless network infrastructure assuming the presence of hidden node collision. This research investigates three essential parameters of multi-hop wireless networks. More specifically, this paper aims to analyze the effect of hidden nodes, network size, and maximum backoff stage on the overall system throughput and packet delay. Results clearly reveal the effect of large wireless network size, maximum backoff stage, and collision probability on throughput and packet delay. On one hand, throughput does not depend on the maximum backoff stage (m) for a small network size (e.g., n \(=\) 10). On the other hand, throughput does not strongly depend on the number of nodes when the backoff stage values are high. Comparing our proposed model in case single-hop with the Bianchi model, the analysis results indicate that the throughput values in our model when the numbers of nodes are 10, 50, and 100 are 0.6031, 0.4172 and 0.3433 respectively; whereas the throughput values are respectively 0.8370, 0.8317 and 0.8255 at the same number of nodes for the Bianchi model. The difference can be attributed to several assumptions made in our proposed model that were not considered in the Bianchi model.  相似文献   

12.
Common packet channel (CPCH) access is an efficient approach to support packet data transmissions in a wideband code-division multiple-access (W-CDMA) system. This letter introduces a simple access control method for CPCH, which results in higher throughput. This method also provides prioritized services for different traffic classes. Each traffic class is assigned a distinct transmit permission probability that is determined at the new call initiation stage based on the status of CPCH channel occupancy. The differentiated service qualities, which correspond to different transmit permission probabilities, are evaluated in terms of packet blocking rates. The overall system performance is also evaluated in terms of normalized throughput.  相似文献   

13.
We consider a system comprising a finite number of nodes, with infinite packet buffers, that use unslotted ALOHA with Code Division Multiple Access (CDMA) to share a channel for transmitting packetised data. We propose a simple model for packet transmission and retransmission at each node, and show that saturation throughput in this model yields a sufficient condition for the stability of the packet buffers; we interpret this as the capacity of the access method. We calculate and compare the capacities of CDMA‐ALOHA (with and without code sharing) and TDMA‐ALOHA; we also consider carrier sensing and collision detection versions of these protocols. In each case, saturation throughput can be obtained via analysis of a continuous time Markov chain. Our results show how saturation throughput degrades with code‐sharing. Finally, we also present some simulation results for mean packet delay. Our work is motivated by optical CDMA in which “chips” can be optically generated, and hence the achievable chip rate can exceed the achievable TDMA bit rate which is limited by electronics. Code sharing may be useful in the optical CDMA context as it reduces the number of optical correlators at the receivers. Our throughput results help to quantify by how much the CDMA chip rate should exceed the TDMA bit rate so that CDMA‐ALOHA yields better capacity than TDMA‐ALOHA. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
This paper considers a satellite network with data messages being transmitted by land mobile users according to slotted Aloha multiple access. The mobile communication links suffering from multipath fading and signal shadowing are modelled as Gilbert-Elliott channels. FEC block coding is used to correct transmission errors. The maximum achievable information throughput and the mean packet delay are derived from a combined analysis of the multiple access and FEC/ARQ protocol. The results show that the additional overhead necessary for FEC is outweighed by the benefit in throughput and delay. Finally, the capture effect and its consequences are discussed.  相似文献   

15.
In this work, the region of achievable quality-of-service (QoS) is precisely described for a system of real-time heterogeneous variable bit rate (VBR) sources competing for slots (packet transmission times) of a time division multiple access (TDMA) frame. The QoS for each application is defined in terms of a maximum tolerable packet-dropping probability. Packets may be dropped due to delay violations and channel induced errors. The region of achievable QoS is precisely described for an interference/resource limited network by considering the underlying TDMA-multiple access control (TDMA-MAC) structure and the physical channel. A simple QoS-sensitive error-control protocol that combats the effects of the wireless channel while satisfying the real-time requirements is proposed and its impact on the region of achievable QoS is evaluated. The results presented here clearly illustrate the negative impact of a poor channel and the positive impact of the employed error-control protocol on the achievable QoS. The region of achievable QoS vectors is central to the call admission problem, and in this work, it is used to identify a class of scheduling policies capable of delivering any achievable performance  相似文献   

16.
An analytical procedure is developed to calculate delay and throughput performance of CSMA/PA (carrier sense multiple access with priority acknowledgments). Time-axis slotting and Markov chain analysis are used to determine the channel backlog per cycle. A cycle includes information packet access and transmission time followed by acknowledgment transmission or time-out. Throughput and delay performance are then calculated in terms of the number of network terminals, the network packet error probability, the packet generation rate, and the mean information packet retransmission delay. Fixed-length information and acknowledgment packets are assumed. Calculated results show excellent agreement with measured delay and throughput performance for two distinct five-node intrabuilding power line networks operating at data rates from 1.2 to 9.6 kb/s  相似文献   

17.
A random access protocol with multiple receivers per mobile node for infrastructure-less mission critical wireless networking system is introduced and analyzed. Each receiver of a mobile node may receive a packet in the presence of collision depending on the receiver quality defined as capture ratio. The maximum throughput per mobile node depends exclusively on the number of receivers per node and the capture ratio. Since the maximum throughput is independent of the variable factors of the network, the network is self-optimized. The self-optimized throughput increases with the increase of the number of receivers per node and the quality of each receiver (defined as capture ratio). On the other hand, the cost per mobile node also increases with the increase of the number of receivers per node and the quality of each receiver. The trade-off between the self-optimized throughput per node and the cost per mobile node is analyzed. In mission critical networking system, most of the traffic may be the real-time traffic, where the number of retransmission attempts is limited. The normalized delay is almost constant if the number of retransmission attempts is more than eight. However, the packet rejection probability decreases with the increase of the number of retransmission attempts.  相似文献   

18.
This paper addresses the problem of efficient packet forwarding in a multihop, wireless "mesh" network. We present an efficient interface contained forwarding (ICF) architecture for a "wireless router," i.e., a forwarding node with a single wireless network interface card (NIC) in a multihop wireless network that allows a packet to be forwarded entirely within the NIC of the forwarding node without requiring per-packet intervention by the node's CPU. To effectively forward packets in a pipelined fashion without incurring the 802.11-related overheads of multiple independent channel accesses, we specify a slightly modified version of the 802.11 MAC, called data driven cut-through multiple access (DCMA) that uses multiprotocol label switching (MPLS)-like labels in the control packets, in conjunction with a combined ACK/RTS packet, to reduce 802.11 channel access latencies. Our proposed technique can be used in combination with "frame bursting" as specified by the IEEE 802.11e standard to provide an end-to-end cut-through channel access. Using extensive simulations, we compare the performance of DCMA with 802.11 DCF MAC with respect to throughput and latency and suggest a suitable operating region to get maximum benefits using our mechanism as compared to 802.11  相似文献   

19.
The medium access control protocol determines system throughput in wireless mobile ad hoc networks following the ieee 802.11 standard. Under this standard, asynchronous data transmissions have a defined distributed coordination function that allows stations to contend for channel usage in a distributed manner via the carrier sensing multiple access with collision avoidance protocol. In distributed coordination function, a slotted binary exponential backoff (BEB) algorithm resolves collisions of packets transmitted simultaneously by different stations. The BEB algorithm prevents packet collisions during simultaneous access by randomizing moments at stations attempting to access the wireless channels. However, this randomization does not eliminate packet collisions entirely, leading to reduced system throughput and increased packet delay and drop. In addition, the BEB algorithm results in unfair channel access among stations. In this paper, we propose an enhanced binary exponential backoff algorithm to improve channel access fairness by adjusting the manner of increasing or decreasing the contention window based on the number of the successfully sent frames. We propose several configurations and use the NS2 simulator to analyze network performance. The enhanced binary exponential backoff algorithm improves channel access fairness, significantly increases network throughput capacity, and reduces packet delay and drop. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The unused time slots in a primary time division multiple access (TDMA) network are regarded as the potential channel access opportunities for secondary users (SUs) in cognitive radio (CR). In this paper, we investigate the medium access control protocols that enable SUs to access a common TDMA channel with primary users (PUs). The primary traffic is assumed to follow a Bernoulli random process. A two‐state Markov chain is used to model the secondary traffic, and two different scenarios are considered. The first scenario assumes that the secondary packet arrivals are independent and follow a Bernoulli random process and a cognitive carrier sensing multiple access (Cog‐CSMA) protocol is proposed. A Rayleigh fading channel is considered in evaluating Cog‐CSMA, and its throughput expression is derived in this paper. The second scenario assumes that the packet arrivals follow a correlated packet arrival process and a cognitive packet reservation multiple access (Cog‐PRMA) protocol is proposed. A Markov chain is used to model the different system states in Cog‐PRMA and derive the throughput. Numerical results show that the Cog‐CSMA and Cog‐PRMA protocols achieve the objective of supporting secondary transmissions in a TDMA network without interfering the PUs' transmissions and improve the network bandwidth utilization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号