首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical behavior of an AZ31 Mg sheet has been investigated at high strain rate (103 s?1) and compared with that observed at low rates (10?3 s?1). Dynamic tests were carried out using a Hopkinson bar at temperatures between 25 and 400 °C. Tensile tests were carried out along the rolling and transverse directions and compression tests along the rolling and the normal directions in both strain rate ranges. The tension–compression yield asymmetry as well as the yield and flow stress in-plane and out-of-plane anisotropies were investigated. The microstructure of the initial and tested samples was examined by electron backscatter diffraction. The dynamic mechanical behavior is characterized by the following observations. At high temperatures the yield asymmetry and the yield anisotropies remain present and twinning is highly active. The rate of decrease in the critical resolved shear stress of non-basal systems with temperature is smaller than at quasi-static rates. Rotational recrystallization mechanisms are activated.  相似文献   

2.
《Acta Materialia》1999,47(13):3705-3720
The mechanical behavior of a commercially pure titanium (CP-Ti) is systematically investigated in quasi-static (Instron, servohydraulic) and dynamic (UCSD's recovery Hopkinson) compression. Strains over 40% are achieved in these tests over a temperature range of 77–1000 K and strain rates of 10−3–8000/s. At the macroscopic level, the flow stress of CP-Ti, within the plastic deformation regime, is strongly dependent on the temperature and strain rate, and displays complex variations with strain, strain rate, and temperature. In particular, there is a three-stage deformation pattern at a temperature range from 296 to 800 K, the specific range depending on the strain rate. In an effort to understand the underlying mechanisms, a number of interrupted tests involving temperature jumps are performed, and the resulting microstructures are characterized using an optical microscope. Based on the experimental results and simple estimates, it is concluded that the three-stage pattern of deformation at temperatures from 296 to 800 K, is a result of dynamic strain aging, through the directional diffusion of dislocation-core point defects with the moving dislocation at high strain rates, although the usual dynamic strain aging by point defects segregating outside the dislocation core through volume diffusion is also observed at low strain rates and high temperatures. The microscopic analysis shows that there is substantial deformation twinning which cannot be neglected in modeling the plastic flow of CP-Ti. The density of twins increases markedly with increasing strain rate, strain, and decreasing temperature. Twin intersections occur, and become more pronounced at low temperatures or high strain rates. In sum, the true stress–true strain curves of CP-Ti show two stages of deformation pattern at low temperatures, three stages at temperatures above 296 K, and only one stage at temperatures exceeding 800 K, although all three stages may exist even at 1000 K for very high strain rates, e.g. 8000/s. While the dislocation motion is still the main deformation mechanism for plastic flow, the experimental results suggest that dynamic strain aging should be taken into account, as well as the effect of deformation twinning.  相似文献   

3.
A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of a Ti alloy (Ti–1.1Mo–5.2Zr–2.9Al–0.35Fe–0.05N–0.20 O–0.02H in wt.%) deformed at strain rates ranging from 8 × 102 s?1 to 8 × 103 s?1 and temperatures between 25 °C and 900 °C. In general, the results indicate that the mechanical behaviour and microstructural evolution of the alloy are highly sensitive to both the strain rate and the temperature conditions. The flow stress curves are found to include both a work-hardening region and a work-softening region. The strain rate sensitivity parameter, β, increases with increasing strain and strain rate, but decreases with increasing temperature. The activation energy varies inversely with the flow stress, and has a low value at high deformation strain rates or low temperatures. The microstructural observations reveal that the strengthening effect evident in the deformed alloy is a result primarily of dislocations and the formation of α phase. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. Additionally, the square root of the dislocation density varies linearly with the flow stress. Correlating the mechanical properties of the current Ti alloy with the TEM observations, it is concluded that the precipitation of α phase dominates the fracture strain. TEM observations reveal that the amount of α phase increases with increasing temperature below the β transus temperature. The maximum amount of α phase is formed at a temperature of 700 °C and results in the minimum fracture strain under the current loading conditions.  相似文献   

4.
《Acta Materialia》2008,56(18):5123-5129
The fracture behaviour of single-crystal pure iron was studied by four-point bending of pre-cracked specimens at temperatures between 77 and 180 K and strain rates between 4.46 × 10−5 and 4.46 × 10−3 s−1. Fracture behaviour changes from brittle to ductile with increasing temperature. The brittle–ductile transition (BDT) temperature increases with increasing strain rate. The relation between BDT temperature and strain rate follows an Arrhenius relation, giving an activation energy for the BDT of 0.33 eV. Dislocation-dynamics simulations of the crack-tip plasticity and resultant shielding of the crack tip were performed using two different variants of the dislocation velocity/stress/temperature relation. The models predict an explicit BDT, and give a good quantitative fit to the experimental transition temperatures.  相似文献   

5.
Three experimental high manganese twinning induced plasticity (TWIP) steels were produced based on thermodynamic stacking fault energy (SFE) calculations, following the thermodynamic modeling approach originally proposed by Olson and Cohen (Metall Trans 7A (1976) 1897). At room temperature, the SFE γSFE of the three materials varied from 20.5 to 42 mJ m?2. In order to study the correlation between the SFE and the mechanical behavior of the TWIP steels, as manifested by the propensity of the material to deformation-induced phase transformations or twinning, tensile tests were performed at temperatures ?50 °C ? T ? 80 °C using strain rates varying between 10?3 s?1 and 1250 s?1. The mechanical behavior of TWIP steels reveals clear temperature dependence, related to the prevailing deformation/strain hardening mechanism, i.e., dislocation slip, deformation twinning or ε-martensite transformation. At high strain rates an increase in temperature due to adiabatic deformation heating also contributes to the SFE, shifting γSFE either towards or away from the optimum value for twinning.  相似文献   

6.
《Acta Materialia》2007,55(18):6356-6364
As-received and shock-prestrained 1018 steel specimens were subjected to forced shear experiments in a split-Hopkinson pressure bar (SHPB) at room temperature and a strain rate of 3800 s−1 to determine the influence of shock-prestraining on the shear behavior of ferrite. Shock-loading was performed below (12.5 GPa) and above (14 GPa) the pressure-induced epsilon phase transition occurring at 13 GPa. Using electron microscopy and electron backscatter diffraction, twinning and microbanding were observed only in the shock-prestrained specimens. Quasi-static compression tests showed an increase in yield and compressive strengths with increased peak shock stress. SHPB tests produced shear localization in all specimens, with shear banding occurring only in the shock-prestrained specimens. Transmission electron microscopy revealed that, at the shear band edge, elongated cells dominate the microstructure, with more shock-induced twins remaining intact in the 12.5 GPa specimen than in the 14 GPa specimen.  相似文献   

7.
This paper presents the investigation of the cracking of coatings deposited on steel substrates. The coating on substrate systems consisted on pure tungsten films (W) and films of solid solutions of carbon in tungsten [W(C)], which were deposited by direct current reactive magnetron sputtering on stainless steel substrates. The systems were strained uniaxially with a microtensile device adapted to a scanning electron microscope. The mechanical response was analyzed from the experimental results: the straining of the samples showed an evolution of the density of cracks in the coating, which was described trough an empirical equation based on the Weibull distribution function. The density of cracks, which corresponds to the crack saturation of the coating, appeared to vary inversely with coating thickness. Critical parameters relative to their mechanical stability were also determined from the experimental results: the strain energy release rate for crack extension through the film, Gfc, and the fracture toughness, KfIc, of the coatings. These values are included between 0.2 and 14 J m−2, and between 0.1 and 2.5 MPa m−1/2. The fracture resistance of W and W(C) coatings was found to be correlated to their thickness and microstructure.  相似文献   

8.
In order to understand the coupling influence of size effects and strain rates on the formability of the austenitic stainless steel 304 foils in micro scale, a series of micro scale limited dome height (LDH) tests were designed and conducted in three different speeds without lubricant on the annealed and as-received austenitic stainless steel 304 foils. In this study, a technique was developed to coat a layer of pure chromium (≈0.3 μm thick) on the foils and by using the etching process to make the micro square grids (50 μm × 50 μm) on the foils. Then, the foils were annealed at different temperatures for obtaining different microstructures. A set of the forming limit curves (FLC) of the foils were obtained and they can be used by industry right away for product design, process design and development, die design, and simulations, etc. Besides, the coupling influence of the size effects and the strain rates on the formability of the austenitic stainless steel 304 foils has been studied, observed and understood.  相似文献   

9.
This paper describes the computer controlled processing of AISI-O1 steel rod by a dieless drawing method. Both the operation of a purposely built machine and the results of an experimental programme are described. The machine consisted of elements to provide a drawing force, a PID controlled band heater and an air/water cooling system to carry out the novel bar production process. The untreated material in bar form of initial diameter, 5 mm, was drawn in the temperature range of 600–750 °C at drawing velocities of 2.5–5 mm/min and with air-cooling provided in the pressure range 2–4 × 105 Pa. The process ratio, i.e. the ratio of the drawing velocity to the heat/cooling device movement velocity was varied between 0.35 and 1.33. A novel load-control algorithm was executed to ensure a steady-state process and a high tolerance on the final drawn diameter.  相似文献   

10.
Stainless steel 304L forgings were produced with four different types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The final forgings were done at the warm working (low hot working) temperatures of 816 °C, 843 °C, and 871 °C. The objectives of the study were to characterize and understand the effect of industrial strain rates (i.e. processing equipment), and deformation temperature on the mechanical properties for the final component. Some of the components were produced with an anneal prior to the final forging while others were deformed without the anneal. The results indicate that lower strain rates produced lower strength and higher ductility components, but the lower strain rate processes were more sensitive to deformation temperature variation and resulted in more within-part property variation. The highest strain rate process, HERF, resulted in slightly lower yield strength due to internal heating. Lower processing temperatures increased strength, decreased ductility but decreased within-part property variation. The anneal prior to the final forging produced a decrease in strength, a small increase in ductility, and a small decrease of within-part property variation.  相似文献   

11.
The mechanical behavior of nanocrystalline Au thin films with average grain size of 64 nm was investigated at strain rates 10?5–10 s?1, and temperatures between 298 and 383 K. The yield strength was highly sensitive to both temperature and strain rate: at room temperature it increased by ~100% within the range of applied strain rates, while it decreased by as much as 50% in the given temperature range at each strain rate. The ductility and activation volume trends pointed to two distinct regimes of plastic deformation: namely, creep-driven and dislocation-mediated plasticity, with the transition occurring at increasing strain rate for increasing temperature. The activation volume for creep-influenced deformation increased monotonically from 6.4b3 to 29.5b3 between 298 and 383 K, signifying grain boundary (GB) diffusion processes and dislocation-mediated creep, respectively. Dislocation climb, as an accommodation mechanism for GB sliding, provided an explanation for the increased activation volume at higher temperatures. The activation volumes calculated at high strain rates decreased from 19.7b3 to 11.4b3 between 298 and 383 K. A model for thermally activated dislocation depinning was applied to explain this abnormal decreasing trend in the activation volume, resulting in activation energy of 1.2 eV.  相似文献   

12.
The hot compression tests of 42CrMo steel were performed in the temperature range of 850–1150 °C at strain rates of 0.01–10 s?1 and deformation degrees of 10–60% on Gleeble-1500 thermo-simulation machine. The optical microstructures in the center region of the section plane were examined. Based on the results from thermo-simulation experiments and metallographic analysis, the dynamic recrystallization mathematical models of 42CrMo steel were derived. The effects of processing parameters, including the strain rate and deformation temperature, on the microstructure evolution of 42CrMo steel hot upsetting process were discussed by integrating the thermo-mechanical coupled finite element method with the derived microstructure evolution models. The fraction of dynamic recrystallization and dynamic recrystallization grain sizes during the hot upsetting process of 42CrMo steel were predicted. The results show that the effects of strain rates and deformation temperatures on the microstructure evolution of 42CrMo steel hot upsetting process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of hot upsetting process for 42CrMo steel.  相似文献   

13.
The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10?6 and 20 s?1. The elastic modulus was independent of the strain rate, 66 ± 4.5 GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940 MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10?1 s?1. The activation volumes for the two film thicknesses were 4.5 and 8.1 b3, at strain rates smaller than 10?4 s?1 and 12.5 and 14.6 b3 at strain rates higher than 10?4 s?1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10?4 s?1. The latter trends indicated that the strain rate regime 10?5–10?4 s?1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6 h) and significant primary creep with initial strain rate of the order of 10?7 s?1.  相似文献   

14.
We propose a new method for contactless, nondestructive evaluation of moving laminated conductors, the so-called Lorentz force evaluation (LFE). The Lorentz force (LF) exerting on a permanent magnet moving relative to the specimen is measured. We propose a novel fast forward calculation of the LF based on a three-dimensional finite volume discretization of the specimen and an approximation of defects using local current distributions in the defect region. The approximate solution is compared with solutions from detailed finite element models developed for parallelepipedic subsurface defects. We obtain differences in LF that range between 1.7% and 6.7%, indicating that our approximation method yields sufficient performance. Furthermore, a linear inverse solution based on the novel forward method is presented. We invert the experimental data measured from a subsurface flaw with the dimensions of 2 mm×2 mm×12 mm located within a laminated conductive bar. The reconstruction method yields the correct position of the flaw with an accuracy of 1 mm in each direction. The reconstruction results are compared with high-resolution finite element analysis of the same crack configuration. We obtain correct lateral positions of the cracks, although the depth estimation shows a slight bias.  相似文献   

15.
22MnB5 steel specimens were deformed at 923 K and 693 K to three strain levels to study the effect of applied strain level on the microstructure and secondary-deformation behavior. As the steel was deformed at 923 K, deformation induced ferrite transformation (DIFT) occurred even when a small strain of 0.044 was applied, and the volume fraction of deformation induced ferrite (DIF) increases with increasing applied strain level. When deformed at 693 K, deformation induced bainite transformation (DIBT) was observed when the applied strain was larger than 0.109. The incubation period for DIFT is shorter than that for DIBT, but the DIBT proceeds much faster than DIFT. Sub-size tensile specimens were cut from the hot deformed 22MnB5 steel specimens, and digital image correlation technique was employed to investigate the secondary-deformation behavior of the sub-size tensile specimens at room temperature. It is found that the appearance of DIF or DIB (deformation induced bainite) decreases the yield strength and ultimate tensile strength (UTS) but increases the elongation and strength–ductility product of the hot deformed 22MnB5 steel specimens compared with the as-quenched 22MnB5 steel specimen with full martensite.  相似文献   

16.
The present article is dealing with 0.2% C, 0.1% V and 0.02% Nb steel. Billets with 130 mm × 130 mm cross-section were austenitized and hold at 1080 °C. The billets were hot rolled to 22 mm bar diameter. Hot rolling was finished at 980–1000 °C. The final bars were air-cooled. On a parallel way, an experimental hot deformation investigation, on the same steel, was carried out at deformation temperature range 1200–800 °C with the same amount of deformation (97% reduction in area). However, cooling regimes after deformation were air cooling, water quenching to 600 °C followed by air cooling, and water quenching to room temperature. Microstructure investigation was done using both optical and scanning electron microscopes. Further evaluation was done using mechanical testing. The industrial trial has unsatisfied results with poorer yield strength with higher ultimate strength. Bainitic aggregates are detected in the hard phases islands. Air cooling after pilot hot deformation creates banded ferrite–pearlite microstructure with 9.11 μm ferrite grains. However, quick water quenching to 600 °C followed by air cooling develops tempered and softened coarse bainite phase. On the other hand, water quenching to room temperature develops fine bainite texture. Water quenching to 600 °C followed by air cooling is the best regime creating accepted mechanical properties.  相似文献   

17.
18.
Creep tests on Ni-based single-crystal superalloy sheet specimens typically show greater creep strain rates and/or reduced strain or time to creep rupture for thinner specimens than predicted by current theories, which predict a size-independent creep strain rate and creep rupture strain. This size-dependent creep response is termed the thickness debit effect. To investigate the mechanism of the thickness debit effect, isothermal, constant nominal stress creep tests were performed on uncoated PWA1484 Ni-based single-crystal superalloy sheet specimens of thicknesses 3.18 and 0.51 mm under two test conditions: 760 °C/758 MPa and 982 °C/248 MPa. The specimens contained initial microvoids formed during the solidification and homogenization processes. The dependence of the creep response on specimen thickness differed under the two test conditions: at 760 °C/758 MPa there was a reduction in the creep strain and the time to rupture with decreasing section thickness, whereas at 982 °C/248 MPa a decreased thickness resulted in an increased creep rate even at low strain levels and a decreased time to rupture but with no systematic dependence of the creep strain to rupture on specimen thickness. For the specimens tested at 760 °C/758 MPa microscopic analyses revealed that the thick specimens exhibited a mixed failure mode of void growth and cleavage-like fracture while the predominant failure mode for the thin specimens was cleavage-like fracture. The creep specimens tested at 982 °C/248 MPa in air showed the development of surface oxides and a near-surface precipitate-free zone. Finite-element analysis revealed that the presence of the alumina layer at the free surface imposes a constraint that locally increases the stress triaxiality and changes the value of the Lode parameter (a measure of the third stress invariant). The surface cracks formed in the oxide scale were arrested by further oxidation; for a thickness of 3.18 mm the failure mode was void nucleation, growth and coalescence, whereas for a thickness of 0.51 mm there was a mixed mode of ductile and cleavage-like fracture.  相似文献   

19.
The critical strain of the Portevin–Le Chatelier (PLC) effect marks the boundary between stable and unstable flow. In this paper, tension tests were conducted at different temperatures ranging from 173 to 333 K. The PLC effect is present at temperatures of 223–328 K. Normal behavior of the critical strain is observed at temperatures of 223298 K, while inverse behavior is observed at 298333 K. By comparing the stress–strain curves at different temperatures, the curves for 173 and 333 K are identified as the lower and upper envelope curves, respectively. Before the critical strain, the stress follows the lower envelope curve at low temperatures, whereas it follows the upper envelope curve at high temperatures. The subsequent serrations, which are upward at low temperatures but downward at high temperatures, oscillate between the two envelope curves. Furthermore, different dislocation states for the lower and upper envelope curves are proposed. The lower envelope curve implies that few dislocations are pinned by solute, while the upper envelope curve implies that some dislocations are pinned by the solute prior to escape. The dominant factor of the critical strain is the diffusibility of the solute at low temperatures and the pinning strength at high temperatures. Finally, based on dynamic strain aging, two critical mechanisms in relation to the first pinning at low temperatures, and the first unpinning at high temperatures, are proposed and are highly consistent with the experiment.  相似文献   

20.
The effects of deformation temperature and strain in hot rolling deformation on strain rate sensitivity of the TiNp/2014 Al composite were studied by tensile tests conducted out at 773, 798, 818 and 838 K with the strain rates from 1.7 ×10?3 to 1.7 × 100 s?1. It is shown that the curves of m value of the TiNp/2014Al composite deformed at different temperatures can be divided into two stages with the variation of strain rate, and the critical strain rates are 10?1 s?1. The optimum deformation temperature of the TiNp/2014 Al composite is near incipient melting temperature of 816 K and the optimum strain rate is a little higher than the critical strain rate. The effect of deformation temperature on strain rate sensitivity is relative to liquid phase helper accommodation. The effect of strain in hot rolling deformation on strain rate sensitivity attributes to change of microstructure and deformation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号