首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This paper considers the situation where users that experience high-mobility transmit data over frequency-selective channels, resulting in a doubly selective channel model (i.e., time- and frequency-selective channels) and this within the framework of Known Symbol Padding (KSP) transmission. KSP is a recently proposed block transmission technique where short sequences of known symbols acting as guard bands are inserted between successive blocks of data symbols. This paper proposes three novel channel estimation methods that allow for an accurate estimation of the time-varying transmission channel solely relying on the knowledge of the redundant symbols introduced by the KSP transmission scheme. The first method is a direct adaptive one while the others rely on a recently proposed model, the Basis Expansion Model (BEM), where the doubly selective channel is approximated with high accuracy using a limited number of complex exponentials. An important characteristic of the proposed methods is that they exploit all the received symbols that contain contributions from the training sequences and blindly filter out the contribution of the unknown surrounding data symbols. Besides these channel identification methods, the classical KSP equalizers are adapted to the context of doubly selective channels, which allows evaluation of the bit-error-rate (BER) performance of a KSP transmission system relying on the proposed channel estimation methods in the context of doubly selective channels. Simulation results show that KSP transmission is indeed a suitable transmission technique toward the delivery of high data rates to users experiencing a high mobility, when adapted KSP equalizers are used in combination with the proposed channel estimation methods.  相似文献   

2.
As an effective technique for combating multipath fading and for high data rate transmission over wireless channels, orthogonal frequ- ency division multiplexing (OFDM) is extensively used in wireless local area network (WLAN) systems to support high-performance bandwidth- efficient multimedia services. In this paper, a robust channel estimation scheme is proposed for the OFDM-based WLAN systems with imperfect synchronization. The frame structure information, the preamble information, the pilot information are efficiently utilized in the proposed channel estimation scheme. Simulation results are used to illustrate the performance of the proposed scheme.  相似文献   

3.
Single carrier-frequency-division multiple access (SC-FDMA) has been adopted as the uplink transmission standard in fourth-generation cellular networks to facilitate power efficiency transmission in mobile stations. Because multiuser multiple-input multiple-output (MU-MIMO) is a promising technology employed to fully exploit the channel capacity in mobile radio networks, this study investigates the uplink transmission of MU-MIMO SC-FDMA systems with orthogonal space-frequency block codes (SFBCs). It is preferable to minimize the length of the cyclic prefix (CP). In this study, the chained turbo equalization technique with chained turbo estimation is employed in the designed receiver. Chained turbo estimation employs a short training sequence to improve the spectrum efficiency without compromising the estimation accuracy. In this paper, we propose a novel and spectrally efficient iterative joint-channel estimation, multiuser detection, and turbo equalization for an MU-MIMO SC-FDMA system without CP-insertion and with short TR. Some simulation examples are presented for the uplink scenario to demonstrate the effectiveness of the proposed scheme.  相似文献   

4.
在导频与数据时分复接的块传输系统中,无保护间隔系统具有最佳的数据传输效率,但工作在多径信道下时,该系统接收信号中导频和数据边缘混叠,接收机需要额外的干扰消除操作以精确分离二者。实际干扰消除算法都会存在一定误差,这种误差会降低信道估计算法的精度,进一步影响整个数据块的解调及解码,最后导致系统误码性能下降。该文提出一种分段混合调制方式:数据块中,可能与导频发生混叠的前后两端数据符号采用低阶调制;而中部依然采用高阶调制。仿真结果表明,在典型大延时多径信道下,分段混合调制系统误码性能明显优于传统无保护间隔的时分导频辅助块传输系统。  相似文献   

5.
作为5G多载波技术强有力的候选对象,通用滤波多载波利用子带滤波技术抑制带外功率泄露,进而降低同步要求和获得更高的频谱效率。本文首先针对通用滤波多载波在慢时变多径信道下的性能进行了分析和研究;其次为消除多径信道所带来的干扰,提出了适用于该多载波系统的信道估计方案,该方案设计了具有重复样式的导频结构进行信道估计,复杂度低;最后针对通用滤波多载波在多径信道下容易遭受符号间干扰的问题,提出了基于干扰消除的Zero-Forcing均衡算法和基于迭代干扰消除的均衡算法,两种算法均能够在消除ISI的基础上进一步地消除ICI和IBI。仿真结果表明,本文提出的信道估计和均衡算法能有效消除通用滤波多载波技术在多径信道下所经受的ISI、ICI和IBI。   相似文献   

6.
In time varying channels, symbol recovery for single carrier cyclic prefix (SCCP) systems becomes complicated, because the orthogonality of channel frequency response (CFR) matrix is destroyed. In response, we propose a block turbo equalization algorithm in the time domain for SCCP to cope with channel time variations. In particular, the band structure of the channel time response (CTR) matrix is exploited to reduce the computational complexity of matrix inversion. In order to use this equalization scheme, accurate channel state information (CSI) must be available. Accordingly, we present a doubly selective channel estimation method for SCCP block transmissions with the aid of a Karhunen-Loeve basis expansion model (KL-BEM). In this method, the channel estimates are firstly obtained by using the cyclic prefix (CP) of each block, and then further refined by employing an expectation maximization (EM) based iterative algorithm. Combining the iterative estimator with the proposed equalizer naturally results in a doubly iterative receiver, the performance of which is shown to come close to the performance with perfect CSI.  相似文献   

7.
8.
This work devises a minimum bit error rate (BER) block-based precoder used in block transmission systems with the proposed cascaded zero-forcing (ZF) equalizer. The study framework is developed as follows. For a block-based precoder, a received signal model is formulated for the two redundancy schemes, viz., trailing-zeros (TZ) and cyclic-prefix (CP). By exploiting the property of oblique projection, a cascaded equalizer for block transmission systems is proposed and implemented with a scheme, in which the inter-block interference (IBI) is completely eliminated by the oblique projection and followed by a matrix degree-of-freedom for inter-symbol interference (ISI) equalization. With the available channel state information at the transmitter side, the matrix for ISI equalization of the cascaded equalizer is utilized to design an optimum block-based precoder, such that the BER is minimized, subject to the ISI-free and the transmission power constraints. Accordingly, the cascaded equalizer with the ISI-free constraint yields a cascaded ZF equalizer. Theoretical derivations and simulation results confirm that the proposed framework not only retains identical BER performance to previous works for cases with sufficient redundancy, but also allows their results to be extended to the cases of insufficient redundancy.  相似文献   

9.
该文设计了一种用于正交频分复用(OFDM)系统的新型保护间隔信号-导频后缀(Pilot Postfix, PP),并构建了采用比特交织编码调制-迭代解码(BICM-ID)技术的PP-OFDM系统。PP由OFDM符号中的频域导频符号进行逆傅氏变换(IFFT)生成,在接收端可与OFDM符号中的导频相干合并,从而提高信道估计性能。该文给出了相应的信道估计、均衡和BICM-ID算法,并通过研究信道估值误差带来的接收信号有效信噪比变化,给出了PP幅度优化设计方法。仿真表明:选取适当的PP大小后,PP-OFDM比循环前缀/补零后缀-OFDM(CP/ZP-OFDM)的信道估计性能更好,误包率更低。  相似文献   

10.
该文设计了一种采用频域导频的块传输方案,并提出了适用于该方案的复杂度较低的接收信号处理算法,包括信道估计算法、均衡解调算法。与现有的PN导频方案构成的块传输方案相比,该文的频域导频块传输方案在没有误码性能损失的前提下大大降低了计算复杂度。仿真验证了该方法的有效性。  相似文献   

11.
Intercarrier interference in MIMO OFDM   总被引:11,自引:0,他引:11  
In this paper, we examine multicarrier transmission over time-varying channels. We first develop a model for such a transmission scheme and focus particularly on multiple-input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM). Using this method, we analyze the impact of time variation within a transmission block (time variation could arise both from Doppler spread of the channel and from synchronization errors). To mitigate the effects of such time variations, we propose a time-domain approach. We design ICI-mitigating block linear filters, and we examine how they are modified in the context of space-time block-coded transmissions. Our approach reduces to the familiar single-tap frequency-domain equalizer when the channel is block time invariant. Channel estimation in rapidly time-varying scenarios becomes critical, and we propose a scheme for estimating channel parameters varying within a transmission block. Along with the channel estimation scheme, we also examine the issue of pilot tone placement and show that in time-varying channels, it may be better to group pilot tones together into clumps that are equispaced onto the FFT grid; this placement technique is in contrast to the common wisdom for time-invariant channels. Finally, we provide numerical results illustrating the performance of these schemes, both for uncoded and space-time block-coded systems.  相似文献   

12.
Single-carrier block transmission is an alternative scheme to orthogonal frequency-division multiplexing (OFDM) for wireless broadband communications. In this paper, a receiver is designed for single-carrier block transmission with cyclic prefix for mobile broadband communications. As the wireless transmission is over doubly selective channels, a basis expansion model is used to capture both the time- and frequency-selectivity of the channel and is parameterized for the receiver design. The receiver estimates the channel model coefficients in the time domain and uses these coefficients for equalization in the frequency domain. The channel estimation is assisted by time-domain pilot insertion. The structure of the frequency-domain channel matrix is exploited and a linear minimum mean-square error equalizer is used for the equalization. When the basis expansion model well matches the physical channel, simulation results show superior receiving performance of the proposed system compared with the OFDM system with a similar complexity.  相似文献   

13.
Transmission and Reception Concepts for WLAN IEEE 802.11b   总被引:1,自引:0,他引:1  
State-of-the-art wireless local area network (WLAN) IEEE 802.11b terminals employ complementary code keying (CCK) as modulation format. In this paper, receiver concepts tailored for CCK transmission over frequency-selective fading channels are presented in a unified and systematic framework. First, optimum maximum-likelihood (ML) detection for CCK signaling is considered. Second, for complexity reduction, minimum mean-squared error block decision-feedback equalization (MMSE-DFE) is investigated and reduced-state sequence estimation (RSSE) is considered on the basis of an Ungerbock-like set partitioning of the multidimensional CCK code wordset. In order to improve the reliability of CCK transmission over fading channels, time-reversal space-time block codes (TR-STBCs) combined with receive diversity are applied. Simulation results of the considered suboptimum receivers are compared with a performance approximation for optimum detection. Our results demonstrate the excellent performance of the advocated equalization schemes and the significant gains that can be achieved with TR-STBCs and receive diversity in typical WLAN environments  相似文献   

14.
In block-mode transmission, inserting a cyclic prefix (CP) between two consecutive blocks provides an efficient way of removing interblock interference and simplifies equalization of frequency-selective channels at the receiver. Here, we address optimal training design for channel estimation in such systems. Our investigations focus on affine precoding schemes. In designing the precoder, least squares channel estimation is constrained to be decoupled from symbol detection, which results in orthogonal precoding schemes. If the precoding matrix is full-rank, the data rate (or bandwidth) has to be traded off to accommodate training. We propose a full-rank orthogonal single-carrier (FROSC) precoding with a low peak-to-average power ratio. Then, in order to improve bandwidth efficiency, we propose a rank deficient orthogonal single carrier (DROSC) precoding scheme. Symbol recovery is still possible thanks to the finite alphabet property of the data symbols.  相似文献   

15.
Block transmission has recently been considered as an alternative to the conventional continuous transmission technique. In particular, block transmission techniques with zero padding (ZP) and cyclic prefix (CP) are becoming attractive procedures for their ability to eliminate both intersymbol interference (ISI) and interblock interference (IBI). In this paper, we present a unified approach to blind-channel estimation and interference suppression for block transmission using ZP or CP in both single-carrier (SC) and multicarrier (MC) systems. Our approach uses a generalized multichannel minimum variance principle to design an equalizing filterbank. The channel estimate is then obtained from an asymptotically tight lower bound of the filterbank output power. Through an asymptotic analysis of the subspace of the received signal, we determine an upper bound for the number of interfering tones that can be handled by the proposed schemes. As a performance measure, we derive an unconditional CramÉr–Rao bound (CRB) that, similar to the proposed blind channel estimators, does not assume knowledge of the transmitted information symbols. Numerical examples show that the proposed schemes approach the CRB as the signal-to-noise ratio (SNR) increases. Additionally, they exhibit low sensitivity to unknown narrowband interference and favorably compare with subspace blind-channel estimators.   相似文献   

16.
An equalization concept for the novel radio access scheme Enhanced Data rates for GSM Evolution (EDGE) is proposed by which high performance can be obtained at moderate computational complexity. Because high-level modulation is employed in EDGE, optimum equalization as usually performed in Global System for Mobile Communications (GSM) receivers is too complex and suboptimum schemes have to be considered. It is shown that delayed decision-feedback sequence estimation (DDFSE) and reduced-state sequence estimation (RSSE) are promising candidates. For various channel profiles, approximations for the bit error rate of these suboptimum equalization techniques are given and compared with simulation results for DDFSE. It turns out that a discrete-time prefilter creating a minimum-phase overall impulse response is indispensable for a favorable tradeoff between performance and complexity. Additionally, the influence of channel estimation and of the receiver input filter is investigated and the reasons for performance degradation compared to the additive white Gaussian noise channel are indicated. Finally, the overall system performance attainable with the proposed equalization concept is determined for transmission with channel coding  相似文献   

17.
The intercarrier interference (ICI) due to the Doppler frequency shift, sampling clock offset, time-varying multipath fading and local oscillator frequency offset becomes the major difficulty for the data transmission via the wireless orthogonal frequency division multiplexing (OFDM) systems. The existing ICI mitigation schemes involve the frequency-domain channel estimation/equalization or the additional coding and therefore require the pilot symbols which reduce the throughput. The frequency-domain channel estimation/equalization relies on the huge matrix inversion with high computational complexity especially for the OFDM technologies possessing many subcarriers such as digital video broadcasting (DVB) systems and wireless metropolitan-area networks (WMAN). In our previous work, we proposed a semi-blind ICI equalization scheme using the joint multiple matrix diagonalization (JMMD) algorithm and empirically showed that the proposed method significantly improved the symbol error rates for QPSK- and 16QAM-OFDM systems. In this paper, we discuss the sufficient condition for the theoretical ICI equalizability and also propose an alternative semi-blind ICI equalization method based on the joint approximate diagonalization of eigen-matrices (JADE) algorithm, which is much more computationally efficient than our previous method.  相似文献   

18.
张静  鄷广增 《通信学报》2006,27(5):90-94
在频率选择性信道下给出了单载波频域均衡系统结合空时分组编码传输基于训练序列的最优信道估计算法。由于选取具有恒幅特性的Chu序列作为训练序列,因此这一算法能够实现信道估计的最小均方误差,并作了理论证明。最后,对本方案的性能进行了仿真比较,仿真的结果证实了本方案的优点。  相似文献   

19.
为提升现有端到端通信系统的适应性与信道估计的准确性,提出了一种适用于多种空时编码方案的多输入多输出(Multiple-Input Multiple-Output,MIMO)自编码器通信系统.该系统将基于卷积神经网络的自编码器引入到MIMO系统中,并结合信道估计网络实现信道均衡,通过端到端的学习方式实现各种空时编码方案下...  相似文献   

20.
Minimum BER block precoders for zero-forcing equalization   总被引:3,自引:0,他引:3  
We determine the linear precoder that minimizes the bit error rate (BER) at moderate-to-high signal-to-noise ratios (SNRs) for block transmission systems with zero-forcing (ZF) equalization and threshold detection. The design is developed for the two standard schemes for eliminating inter-block interference, viz, zero padding (ZP) and cyclic prefix (CP). We show that both the ZP minimum BER precoder and the CP minimum BER precoder provide substantially lower error rates than standard block transmission schemes, such as orthogonal frequency division multiplexing (OFDM). The corresponding SNR gains can be on the order of several decibels. We also show that the CP minimum BER precoder can be obtained by a two-stage modification of the water-filling discrete multitone modulation (DMT) scheme in which the diagonal water-filling power loading is replaced by a full matrix consisting of a diagonal minimum mean square error power loading matrix post multiplied by a discrete Fourier transform (DFT) matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号