首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Geographic routing for realistic conditions is often permeated with localization errors resulting in poor performance and high energy consumption. We propose a simple yet novel geographic routing method to accomplish routing in the presence of location and channel errors. In this algorithm, it is proposed that next hop node is selected based on the combined probability of distance, estimated location error and estimated channel access probability associated with neighbor nodes. The metrics observed for performance were the successful packet delivery rate and the energy consumed. Our algorithms performance is better compared to greedy forwarding techniques of algorithms such as Greedy routing scheme (GRS) and geographic random forwarding (GeRaF). Simulations show the throughput for our algorithm is better compared to others along with reducing the energy wasted on lost packets.

  相似文献   

2.
Reducing the energy consumption of network nodes is one of the most important problems for routing in wireless sensor networks because of the battery limitation in each sensor. This paper presents a new ant colony optimization based routing algorithm that uses special parameters in its competency function for reducing energy consumption of network nodes. In this new proposed algorithm called life time aware routing algorithm for wireless sensor networks (LTAWSN), a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. Finally, with the results of the multiple simulations we were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.  相似文献   

3.
邹赛  汪文勇  唐勇  张骏 《通信学报》2013,34(Z1):36-275
在异构无线传感器网络模型下,针对采集节点发送数据能量消耗过高及路由时分组丢失率过大等情况,对数据汇聚节点的位置优化及路由进行了研究,提出了移动汇聚节点位置优化路由算法(MLOYIH)。先根据蚁群算法的原理对移动节点与静态节点进行分组,再在组内寻找适合的位置放置汇聚节点,最后根据供电情况,选择合适的跳算进行路由。经过仿真实验与性能分析表明,MLOYIH算法与传统算法比较,能量消耗降低到64%,分组丢失率不高于3%。  相似文献   

4.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

5.
An algorithm is defined for establishing routing tables in the individual nodes of a data network. The routing table at a nodeispecifies, for each other nodej, what fraction of the traffic destined for nodejshould leave nodeion each of the links emanating from nodei. The algorithm is applied independently at each node and successively updates the routing table at that node based on information communicated between adjacent nodes about the marginal delay to each destination. For stationary input traffic statistics, the average delay per message through the network converges, with successive updates of the routing tables, to the minimum average delay over all routing assignments. The algorithm has the additional property that the traffic to each destination is guaranteed to be loop free at each iteration of the algorithm. In addition, a new global convergence theorem for noncontinuous iteration algorithms is developed.  相似文献   

6.
Recently more and more research interest focuses on the energy efficient routing in mobile ad hoc networks and many related routing algorithms are reported. In this paper, a new optimized priority based energy efficient routing algorithm is presented and priority is added to the existing routing algorithm according to the residual energy proportion of the nodes. Lower residual energy means lower priority and the nodes with lower priority are less likely to forward packets to other nodes. The algorithm needs no global information of the networks and only a little modification is needed to the existing algorithm, so it is practical to be implemented. The algorithm can improve the performance of routing discovery, routing maintenance and cache management at the same time. Some optimization strategy is taken to reduce the network overhead and the lifetime of the network is much longer and the network with our algorithm can transfer much more effective data. Simulation with NS-2 is done and satisfying results are obtained with this algorithm. The results show that the algorithm is efficient.  相似文献   

7.
We consider the problem of localized energy aware routing in mobile ad hoc networks. In localized routing algorithms, each node forwards a message based on the position of itself, its neighbors and the destination. The objective of energy aware routing algorithms is to minimize the total power for routing a message from source to destination or to maximize the total number of routing tasks that a node can perform before its battery power depletes. In this paper we propose new localized energy aware routing algorithms called OLEAR. The algorithms have very high packet delivery rate with low packet forwarding and battery power consumption. In addition, they ensure good energy distribution among the nodes. Finally, packets reach the destination using smaller number of hops. All these properties make our algorithm suitable for routing in any energy constrained environment. We compare the performance of our algorithms with other existing energy and non‐energy aware localized algorithms. Simulation experiments show that our algorithms present comparable energy consumption and distribution to other energy aware algorithms and better packet delivery rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
基于跨层设计的无线传感器网络节能双向梯度路由算法   总被引:1,自引:0,他引:1  
针对现有无线传感器网络梯度路由算法在下行路由创建过程和能量更新机制中存在冗余控制开销的问题,该文提出一种采用跨层和功率控制机制,具有节能功能的双向梯度路由算法(Cross-layer Energy-efficient Bidirectional Routing,CEBR):无需使用专门的控制分组,采用源路由方式以较小开销建立从Sink节点通往传感器节点的下行路由;通过跨层信息共享,定期采集节点剩余能量信息并按需发布;设计使用含跳数和节点剩余能量的合成路由度量标准,减少节点能量和网络带宽消耗的同时均衡节点能耗;结合RSSI(Received Signal Strength Indication)测距实现节点发射功率控制从而在数据及查询分组发送过程中节约节点能量。理论分析表明了CEBR的有效性;仿真结果显示:与现有的典型相关算法相比,CEBR能够在建立双向梯度路由的前提下,至少降低34.5%的归一化控制开销和27.12%的数据分组平均能耗,并使网络生存期延长18.98%以上。  相似文献   

9.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

10.
Wang  Xiaoyi  Cheng  Gongxue  Sun  Qian  Xu  Jiping  Zhang  Huiyan  Yu  Jiabin  Wang  Li 《Wireless Networks》2020,26(8):5855-5866

Due to the limited resources of water quality sensor networks, how to design a routing protocol which can prolong the network life cycle is one of a research hotspots. In this paper, according to the event level and the node energy of the sensor networks, the nodes’ types are defined, which can help to determine the cluster node. Then, an event driven routing protocol (EDRP) is proposed, which considers the event information and the remaining energy of the whole network. Simulation results show that, compared with distributed energy-efficient clustering algorithm, EDRP can reduce the overall energy consumption of the network by 138–172%, based on different kinds of events. Besides, EDRP can effectively prolong the life cycle and greatly increase the amount of data transmission of the network.

  相似文献   

11.
无线传感器网络簇间节能路由算法   总被引:1,自引:1,他引:0  
胡钢  朱佳奇  陈世志 《通信技术》2009,42(11):135-137
针对基于分簇网络的无线传感器网络簇间路由协议,让簇首和Sink节点直接通信或通过簇首节点转发数据造成能耗不均,节点过早死亡的缺陷。文中提出一种基于网关节点模型的无线传感器网络簇间路由算法,通过簇头与网关节点、网关节点自身建立虚电路,制定存储转发路由,将数据转发给Sink节点。并引入延时等待机制,增强了簇间信息的融合度,此算法适用于大规模无线传感器网络,有良好的可扩展性。仿真表明在能量节省等性能上与传统簇间路由算法相较有较大提高。  相似文献   

12.
A Routing Algorithm for Wireless Ad Hoc Networks with Unidirectional Links   总被引:6,自引:0,他引:6  
Prakash  Ravi 《Wireless Networks》2001,7(6):617-625
Most of the routing algorithms for ad hoc networks assume that all wireless links are bidirectional. In reality, some links may be unidirectional. In this paper we show that the presence of such links can jeopardize the performance of the existing distance vector routing algorithms. We also present modifications to distance vector based routing algorithms to make them work in ad hoc networks with unidirectional links. For a network of n nodes, neighbors exchange n×n matrices to propagate routing information. This results in loop-free routes.  相似文献   

13.
This paper studies the multicast routing problem in the multi‐hop wireless network. We exploit topology control to put forward a multicast routing algorithm with minimum energy consumption. First, network nodes are classified as different clusters. Then, the end‐to‐end multicast routing is appropriately built by using the cooperation among clusters and in each cluster and by minimizing the energy consumption. Unlike previous methods, we employ the appropriate cooperation among/in clusters and the optimal cross‐layer design to attain the information from the different layers and the different nodes. In a result, on the basis of the information, the needed clusters of nodes are correctly created. This is helpful to avoid clustering blindly network nodes and to reduce computational overheads. Simulation results show that the proposed algorithm is promising and effective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
介绍了无线多媒体传感网络(WMSN)路由的设计原则与策略,描述了路径最优的基本原理,最后从最优路径的选择、信息转发策略、节点能量消耗3个方面考虑,设计出路径最优路由算法。该算法与蚁群算法进行比较,实验结果表明,该算法在节点能量消耗、信息传送速度上都优于蚁群算法,尤其传速率提高了30%左右。  相似文献   

15.
Clustering and multi-hop routing algorithms substantially prolong the lifetime of wireless sensor networks (WSNs). However, they also result in the energy hole and network partition problems. In order to balance the load between multiple cluster heads, save the energy consumption of the inter-cluster routing, in this paper, we propose an energy-efficient routing algorithm based on Unequal Clustering Theory and Connected Graph Theory for WSN. The new algorithm optimizes and innovates in two aspects: cluster head election and clusters routing. In cluster head election, we take into consideration the vote-based measure and the transmission power of sensor nodes when to sectionalize these nodes into different unequal clusters. Then we introduce the connected graph theory for inter-cluster data communication in clusters routing. Eventually, a connected graph is constituted by the based station and all cluster heads. Simulation results show that, this new algorithm balances the energy consumption among sensor nodes, relieves the influence of energy-hole problem, improve the link quality, achieves a substantial improvement on reliability and efficiency of data transmission, and significantly prolongs the network lifetime.  相似文献   

16.

Wireless sensor networks (WSN) consists of numerous number of nodes fitted with energy reserves to collect large amount of data from the environment on which it is deployed. Energy conservation has huge importance in wsn since it is virtually impossible to recharge the nodes in their remote deployment. Forwarding the collected data from nodes to the base station requires considerable amount of energy. Hence efficient routing protocols should be used in forwarding the data to the base station in order to minimize the energy consumption thereby increasing the life-time of the network. In this proposed routing protocol, we consider a hierarchical routing architecture in which nodes in the outer-level forwards data to the inner-level nodes. Here we optimized the routing path using ant-colonies where data moves along minimal congested path. Further, when ant-colony optimization is used, certain cluster-head nodes may get overloaded with data forwarding resulting in early death due to lack of energy. To overcome this anomaly, we estimated the amount of data a neighboring Cluster-head can forward based on their residual energy. We compared the energy consumption results of this proposed Routing using Ant Colony Optimization (RACO) with other existing clustering protocols and found that this system conserves more energy thereby increasing lifetime of the network.

  相似文献   

17.

In this paper we probe the routing algorithm that maximizes the quality of the network. In this regard, we present various scenarios for comparisons among different routing algorithms in a wireless sensor network. Using simulations conducted in NS-2, we compare the performance of genetic algorithm (GA) to the Dijkstra algorithm, Ad hoc On-Demand Distance Vector (AODV), GA-based AODV Routing (GA-AODV), grade diffusion (GD) algorithm, directed diffusion algorithm and GA combined with the GD algorithm. We assume the presence of faulty nodes and work on finding out the performance that enhances the lifespan of the sensor network. In this regard, we have simulated routing algorithms while considering faulty nodes up to 50% of the functioning nodes. Nodes are considered to be dynamic and we assumed different mobility speeds of the nodes. Our results demonstrate that GA can be used in different network configurations as it shows a better performance in the wireless sensor network.

  相似文献   

18.
In this paper, we present new algorithms for online multicast routing in ad hoc networks where nodes are energy-constrained. The objective is to maximize the total amount of multicast message data routed successfully over the network without any knowledge of future multicast request arrivals and generation rates. Specifically, we first propose an online algorithm for the problem based on an exponential function of energy utilization at each node. The competitive ratio of the proposed algorithm is analyzed if admission control of multicast requests is permitted. We then provide another online algorithm for the problem, which is based on minimizing transmission energy consumption for each multicast request and guaranteeing that the local network lifetime is no less than gamma times of the optimum, where gamma is constant with 0 < gammaleq 1. We finally conduct extensive experiments by simulations to analyze the performance of the proposed algorithms, in terms of network capacity, network lifetime, and transmission energy consumption for each multicast request. The experimental results clearly indicate that, for online multicast routing in ad hoc wireless networks, the network capacity is proportional to the network lifetime if the transmission energy consumption for each multicast request is at the same time minimized. This is in contrast to the implication by Kar et al. that the network lifetime is proportional to the network capacity when they considered the online unicast routing by devising an algorithm based on the exponential function of energy utilization at each node.  相似文献   

19.
Kim  Jin-Woo  Kim  Jae-Wan 《Wireless Networks》2019,25(6):3441-3452

The traditional clustering algorithm is an advanced routing protocol for enhancing an energy efficiency, which selects a cluster head and transmits the aggregated data arriving from the sensor nodes in the cluster to a gateway. However, the existing literature works were not suitable for an IEEE 802.15.4 beacon enabled mode and did not provide the combined solution for an energy efficient scheduling and handover of the sensor nodes. To address these problems, in this paper, we propose an energy efficient clustering algorithm for the mobility support in IEEE 802.15.4 networks. The simulation results show that the proposed scheme reduces the energy consumption and the packet loss, thus enhancing the performance.

  相似文献   

20.
研究了IP over WDM网络的低碳路由问题,综合 考虑业务持续时间和利用可再生能源和传统能源供能两个 因素,基于分层图模型,提出一种带有业务持续时间感知的绿色路由(HTAGR)算法。HTAGR 依据节点处太阳能 供能情况以及节点和链路的能耗情况动态调整链路权值,并鼓励选择业务持续时间内需要额 外消耗传统能源最少的 路径建立连接。仿真结果表明,与传统节能路由算法相比,HTAGR 有利于消耗更少的传统能 源和使用更多的可再 生能源,在保持较低阻塞率的同时,进一步降低了业务平均传统能耗和CO2排放量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号