首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple structure, a rhodamine fluorescent derivative, was synthesized easily by a one-step condensation reaction of rhodamine B ethylenediamine and acetylacetone. Its structure was characterized by X-ray crystallography, NMR, MS and IR spectroscopy. As a bi-functional and highly selective “OFF–ON” chemosensor for Fe3+ or Cu2+, the derivative displayed a selective fluorescence enhancement effect only with Fe3+ and an absorption enhancement effect only with Cu2+ by modulating the pH value. In an aqueous ethanol medium, Fe3+ formed a 1:1 complex with the derivative at pH 6, while Cu2+ formed a 1:1 complex at pH 8.5. The limits of detection of the ions were low: 3.9 × 10−9 and 4.8 × 10−8 mol L−1. The derivative also functioned as a fluorescence sensor for CT-DNA, in which the Fe3+ ion that was used as a bridge between the derivative and DNA forming a ternary complex.  相似文献   

2.
Current work reports a method of preparation of stable yellow copper (I) oxide, nano-colloid by a solution route using Cu (II) salt solution and sodium borohydride. The reduction process was carried out in a controlled manner in air at around 50 °C in the presence of alginate matrix. The nanophase was characterized by techniques such as electronic spectroscopy, infrared spectroscopy, powder X-ray diffraction and transmission electron microscopy. Sensor property of the colloid for the detection of metal ions such as Ag+, Na+, K+, Ca2+, Pb2+, Cd2+, Zn2+, Hg2+, Mg2+ and As5+ has been studied at room temperature. A distinct color change from yellow to dark brown was noticed in the case of Ag+ ion. This is associated with a shift in ‘λmax’ value from 448 nm to 478 nm. Whereas, no such significant visible color change was noticed on the addition of solutions containing other metal ions. Thus, in the present study Cu2O nano-colloid was demonstrated as a highly specific and selective liquid colorimetric sensor for Ag+ ion.  相似文献   

3.
A new acridine fluoroionophore containing two diethanolamine ligands, 4,5-bis(N,N-di (2-hydroxyethyl)iminomethyl)acridine (BHIA), was designed and synthesized based on the fluorophore-spacer-receptor format. And its fluorescent sensing behavior towards metal ions was investigated in buffered aqueous media. The presence of Cd2+ induces the formation of a 1:1 ligand/metal complex at neutral pH, which exhibits enhanced emission at 454 nm. The fluorescence intensity is linear with the Cd2+ concentration in the range of 1.0 × 10−6 to 3.0 × 10−5 M (R = 0.9967). Experimental results show a low interference response towards other metal ions. The selective switch-on fluorescence response of BHIA to Cd2+ makes it suitable for sensing of Cd2+ in aqueous solution. The detection limit is 1.3 × 10−7 M. Moreover, the results indicated that BHIA was a reversible chemosensor for Cd2+, which makes it attractive for sensing applications.  相似文献   

4.
A new sensor membrane based on a novel triazolo-thiadiazin derivative immobilized in polyvinyl chloride has been developed for the determination of Pb(II) ions that displays excellent performance. The parameters involved in the preparation of the optode and determination of Pb(II) were optimized. Under the optimal conditions, the proposed sensor displays a calibration response for Pb(II) over a wide concentration range of 5.0 × 10−8 to 3.8 × 10−4 M with the detection limit of 2.2 × 10−8 M. In addition to high reproducibility and reversibility of the fluorescence signal, the sensor also exhibits good selectivity over common metal ions. The optode membrane developed is easily prepared, stable, rapid, and simple for the determination of Pb(II). The accuracy of the proposed sensor was confirmed by analyzing standard reference materials of natural water and surface water. The sensor was successfully used for the determination of Pb(II) ions in water samples with satisfactory results.  相似文献   

5.
A new triphenylamine-based fluorogenic probe bearing an indolylmethane unit (R1) was developed as a fluorescent chemosensor with high selectivity toward Cu2+ over other cations tested. The new probe R1 only sensed Cu2+ among heavy and transition metal (HTM) ions in CH3CN/H2O (70/30, v/v) solution. The capture of Cu2+ by the receptor resulted in deprotonation of the secondary amine conjugated to the triphenylamine, so that the electron-donation ability of the “N” atom would be greatly enhanced; thus sensor showed a 250 nm change in the new absorption band (from 291 nm to 541 nm) and a large colorimetric response, it also exhibited the large decrease in fluorescence intensity at 378 nm and affinity to Cu2+ over other cations such as Hg2+, Fe3+, Pb2+, Zn2+, Cd2+, Ni2+, Co2+ and Mn2+ make this compound a useful chemosensor for Cu2+ detection in CH3CN/H2O (70/30, v/v) mixture. The probe R1 (c = 1.0 × 10−6 M) displayed significant fluorescence change and colorimetric change upon addition of Cu2+ among the metal ions examined.  相似文献   

6.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize cysteine (Cys) in aqueous solution. The fluorescence enhancement of 1 was attributed to the cyclization reaction of 1 with Cys by 1:1 binding stoichiometry, which has been utilized as the basis of fabrication of the Cys-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Cys indicated that the methods can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Cys-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Cys with a linear range covering from 3.9 × 10−8 to 1.4 × 10−5 M and a detection limit of 7.8 × 10−9 M. And the chemosensor shows excellent selectivity for Cys over other amino acids. Moreover, the response of the chemosensor toward Cys is fast (response time less than 3 min). In addition, the chemosensor has been used for determination of Cys in serum samples with satisfactory results.  相似文献   

7.
This work reports on the Cu2+ chemosensing behaviour of self-organized micro-array structures of a novel donor-acceptor bichromophoric compound anchored onto Ag nanoisland films. The system exhibits quenching of the fluorescence in the presence of Cu2+ ions, with detection range extending from 2 × 10−8 M up to 3 × 10−6 M and limit of detection (LOD) of 8 × 10−9 M. The quenching of fluorescence is accompanied by a quenching of SERS signal from the metal-organic structure, which is consistent with an electron transfer between the copper cation and the organic moiety. The self-organization property of the sensing complexes into micrometric arrays offers great potential for miniaturization and future development of Cu2+ detection systems based on real-time observation of fluorescence or SERS quenching by fluorescence microscopy or microRaman spectroscopy.  相似文献   

8.
This paper presents the development and construction of a sensitive new optical sensor that is highly selective to Hg2+ ion in aqueous solution. The sensing element, the newly synthesized (1Z,2Z)-N′1,N′2-dihydroxy-N1,N2-dipyridin-2-ylethanediimidamide, incorporated into a plasticized poly(vinyl chloride) membrane, is capable of determining mercury(II) with a high selectivity over a wide dynamic range from 5.78 × 10−9 to 1.05 × 10−3 M at pH 4.0 with a lower detection limit of 1.71 × 10−9 M. The optode membrane's response to Hg2+ is fully reversible and reveals a very good selectivity towards Hg2+ ion over a wide variety of other metal ions in solution. Performance characteristics of the sensor evaluated as good reversibility, wide dynamic range, long life span, long-term response stability, and high reproducibility. The proposed optical sensor gives good results for applications in direct determination of mercury(II) in environmental real samples that are satisfactorily comparable with corresponding data from cold-vapor atomic absorption spectrometry.  相似文献   

9.
In this paper, we presented a carbon tetrachloride gas sensor with strong cataluminescence response based on Ag2Se nanomaterial, which was synthesized via the electrodeposition on the surface of Al foil by directly using a non-aqueous dimethyl sulfoxide (DMSO) solution with CH3COOAg and SeCl4. The deposited Ag2Se material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the prepared Ag2Se material along with the Al foil substrate was employed to design the carbon tetrachloride gas sensor. Under the optimized conditions, the present gas sensor exhibited a broad linear range of 0.9-228 μg mL−1, with a limit of detection of 0.3 μg mL−1 (S/N = 3). The proposed gas sensor showed good characteristics with high selectivity, fast response and long lifetime.  相似文献   

10.
We have investigated real-time, label-free, in situ detection of human epidermal growth factor receptor 2 (Her2) in diluted serum using the first longitudinal extension mode of a lead zirconate-lead titanate (PZT)/glass piezoelectric microcantilever sensor (PEMS) with H3 single-chain variable fragment (scFv) immobilized on the 3-mercaptopropyltrimethoxysilane (MPS) insulation layer of the PEMS surface. We showed that with the longitudinal extension mode, the PZT/glass PEMS consisting of a 1 mm long and 127 μm thick PZT layer bonded with a 75 μm thick glass layer with a 1.8 mm long glass tip could detect Her2 at a concentration of 6–60 ng/ml (or 0.06–0.6 nM) in diluted human serum, about 100 times lower than the concentration limit obtained using the lower-frequency flexural mode of a similar PZT/glass PEMS. We further showed that with the longitudinal mode, the PZT/glass PEMS determined the equilibrium H3–Her2 dissociation constant Kd to be 3.3 ± 0.3 × 10−8 M consistent with the value, 3.2 ± 0.28 × 10−8 M deduced by the surface plasmon resonance method (BIAcore).  相似文献   

11.
A novel Ni2+ optode was prepared by covalent immobilization of thionine, 3,7-diamine-5-phenothiazoniom thionineacetate, in a transparent agarose membrane. Influences of various experimental parameters on Ni2+ sensing, including the reaction time, the solution pH and the concentration of reagents were investigated. Under the optimized conditions, a linear response was obtained for Ni2+ concentrations ranging from 1.00 × 10−10 to 1.00 × 10−7 mol l−1 with an R2 value of 0.9985. The detection limit (3σ) of the method for Ni2+ was 9.30 × 10−11 mol l−1. The influence of several potentially interfering ions such as Ag+, Hg2+, Cd2+, Zn2+, Pb2+, Cu2+, Mn2+, Co3+, Cr3+, Al3+ and Fe3+ on the determination of Ni2+ was studied and no significant interference was observed. The membrane showed a good durability and short response time with no evidence of reagent leaching. The membrane was successfully applied for the determination of Ni2+ in environmental water samples.  相似文献   

12.
This work describes the preparation of a novel pyrazoline compound and the properties of its UV-vis absorption and fluorescence emission. Moreover, this compound can be used to determine Zn2+ ion with high selectivity and a low detection limit in the HEPES (20 mM HEPES, pH = 7.2, 50% (v/v) CH3CN) buffer solution. This sensor forms a 1:1 complex with Zn2+ and shows a fluorescent enhancement by chelation enhanced fluorescence effect with good tolerance of other metal ions. In addition, this sensor is very sensitive with fluorometric detection limit of 0.12 μM.  相似文献   

13.
A highly sensitive hydrazine sensor was developed based on the electrodeposition of gold nanoparticles onto the choline film modified glassy carbon electrode (GNPs/Ch/GCE). The electrochemical experiments showed that the GNPs/Ch film exhibited a distinctly higher activity for the electro-oxidation of hydrazine than GNPs with 3.4-fold enhancement of peak current. The kinetic parameters such as the electron transfer coefficient (α) and the rate of electron exchange (k) for the oxidation of hydrazine were determined. The diffusion coefficient (D) of hydrazine in solution was also calculated by chronoamperometry. The sensor exhibited two wide linear ranges of 5.0 × 10−7-5.0 × 10−4 and 5.0 × 10−4-9.3 × 10−3 M with the detection limit of 1.0 × 10−7 M (s/n = 3). The proposed electrode presented excellent operational and storage stability for the determination of hydrazine. Moreover, the sensor showed outstanding sensitivity, selectivity and reproducibility properties. All the results indicated a good potential application of this sensor in the detection of hydrazine.  相似文献   

14.
In this paper, DNA–Cu2+ complex was electrodeposited onto the surface of glassy carbon (GC) electrode, which fabricated a DNA–Cu2+/GC electrode sensor to detect H2O2 with nonenzyme. Cyclic voltammogram of DNA–Cu2+/GC electrode showed a pair of well-defined redox peaks for Cu2+/Cu+. Moreover, the electrodeposited DNA–Cu2+ complex exhibited excellent electrocatalytic behavior and good stability for the detection of H2O2. The effects of Cu2+ concentration, electrodeposition time and determination conditions such as pH value, applied potential on the current response of the DNA–Cu2+/GC electrode toward H2O2 were optimized to obtain the maximal sensitivity. The linear range for the detection of H2O2 is 8.0 × 10−7 M to 4.5 × 10−3 M with a high sensitivity of −40.25 μA mM−1, a low detection limit of 2.5 × 10−7 M and a fast response time of within 4 s. In addition, the sensor has good reproducibility and long-term stability and is interference free.  相似文献   

15.
A very sensitive and reversible optical chemical sensor based on dithizone as chromoionophore immobilized within a plasticized carboxylated PVC film for Zn2+ determination is described. At optimum conditions (i.e. pH 5.0), the proposed sensor displays a linear response to Zn2+ over 5.0 × 10−8-5.0 × 10−6 mol L−1 range. This range was improved to 2.5 × 10−8-5.8 × 10−5 mol L−1 range by applying principle component-feed forward artificial neural network with back-propagation training algorithm (PC-ANNB). Detection limit of 8.0 × 10−9 mol L−1 was obtained. The sensor is fully reversible within the dynamic range and the response time (t95%) is approximately 4 min under batch conditions. In addition to its high stability and reproducibility, the sensor shows good selectivity towards Zn2+ ion with respect to common metal cations. The sensor was successfully applied for determination of Zn2+ ion in hair sample.  相似文献   

16.
A new near infrared (NIR) fluorescent 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye with dual functionality was synthesized and characterized. The compound 1 responds to copper ion in NIR region with high selectivity through a photo-induced electron transfer process established between the substituted benzene group in the meso position and the BODIPY core when Cu2+ binds with the four oxygen atoms in the structure, and results in the quenching of the fluorescence. The response range to copper ions was from 10 to 50 μM, and other metal ions including Li+, Na+, K+, Mg2+, Ca2+, Pb2+, Fe3+, Ag+, Hg2+, Co2+, Zn2+, Mn2+, Cd2+, Ni2+ and Al3+ had no interference. When excited at 520 nm, a new emission peak at 568 nm of compound 1 was used to detect Al3+ selectively from 30 μM to 110 μM without any interference from other metal ions including copper ions.  相似文献   

17.
In present paper, the graphene doped carbon paste electrode (CPE) was firstly prepared with the addition of graphene into the carbon paste mixture. Compared with conventional CPE, an improved electrochemical response of graphene doped CPE toward the redox couple of Fe(CN)63−/4− was demonstrated owing to the excellent electrical conductivity of graphene. The graphene doped CPE was further used for the successful determination of ascorbic acid (AA), and it showed an excellent electrocatalytic oxidation activity toward AA with a lower overvoltage, pronounced current response, and good sensitivity. Under the optimized experimental conditions, the proposed electrochemical AA sensor exhibited a rapid response to AA within 5 s and a linear calibration plot ranged from 1.0 × 10−7 to 1.06 × 10−4 M was obtained with a detection limit of 7.0 × 10−8 M.  相似文献   

18.
The characterization of an optical sensor membrane is described for simultaneous determination of sulfite and sulfide ions based on the immobilization of crystal violet on a triacetylcellulose membrane. The absorbance of the membranes decreased by increasing sulfite and sulfide concentration. The partial least squares (PLS-1) calibration model based on spectrophotometric measurement for simultaneous determination of sulfite and sulfide ions was applied. This method is based on the difference between the rate of the reaction of sulfide and sulfite with membranes in pH 7.0 buffer solution and at 25 °C. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 18 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range of 200–2000 μg mL−1 (2.5–25 mmol L−1) and 80–900 μg mL−1 (2.5–28.125 mmol L−1) for sulfite and sulfide, respectively. The sensor can readily be regenerated with water and the color is fully reversible. The sensor was successfully applied to the simultaneous determination of sulfide and sulfite in water samples.  相似文献   

19.
Using per-6-ammonium-β-cyclodextrin (per-6-NH3+-β-CD) as an anion binding site and p-nitrophenol as a spectroscopic probe, a colorimetric sensor is developed for phosphate and pyrophosphate anions in water. Per-6-NH3+-β-CD forms a 1:2 inclusion complex with p-nitrophenol as characterized by NOESY and ESI-MS spectra and it undergoes a distinct color change from colorless to intense yellow upon exposure to phosphate or pyrophosphate anions over other anions including perchlorate, ATP2−, ADP2− and AMP2−. The seven ammonium groups of 1, bind phosphate (characterized by ESI-MS) or pyrophosphate anions specifically by electrostatic interaction. This naked eye sensing is significant for very low concentration (5 × 10−5 M) of anion with 1:2 ratio of host and guest.  相似文献   

20.
A new all-solid-state Cd2+-selective electrode with a low detection limit was prepared by using conjugated thiophene oligomer α-sexithiophene (α-6T) as solid contact deposited between an ionophore-doped poly(vinyl chloride) membrane and a gold disc substrate. The electrode exhibited a Nernstian response for Cd2+ ions over a wide concentration range of 10−3-10−7 M with a detection limit as low as 1.3 × 10−8 M. Results showed that the fabricated potentiometric sensor was suitable for use within the pH range of 2.0-9.0 and exhibited good reproducibility for long-term measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号