首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
A new rhodamine B derivative colorimetric and fluorescent sensor (1) was synthesized by condensation reaction of rhodamine B hydrazide and 2,4-dihydroxybenzaldehyde, which showed reversible and highly selective and sensitive recognition toward Cu2+ over other examined metal ions. Upon addition of Cu2+, sensor 1 exhibits remarkably enhanced absorbance intensity and color change from colorless to pink in DMSO and MeCN aqueous buffer solution or pure MeCN, and shows significant off-on fluorescence accompanied by color changes from colorless to orange in MeCN. The sensor 1 was also successfully applied to the determination of Cu2+ in water samples.  相似文献   

2.
A new acridine fluoroionophore containing two diethanolamine ligands, 4,5-bis(N,N-di (2-hydroxyethyl)iminomethyl)acridine (BHIA), was designed and synthesized based on the fluorophore-spacer-receptor format. And its fluorescent sensing behavior towards metal ions was investigated in buffered aqueous media. The presence of Cd2+ induces the formation of a 1:1 ligand/metal complex at neutral pH, which exhibits enhanced emission at 454 nm. The fluorescence intensity is linear with the Cd2+ concentration in the range of 1.0 × 10−6 to 3.0 × 10−5 M (R = 0.9967). Experimental results show a low interference response towards other metal ions. The selective switch-on fluorescence response of BHIA to Cd2+ makes it suitable for sensing of Cd2+ in aqueous solution. The detection limit is 1.3 × 10−7 M. Moreover, the results indicated that BHIA was a reversible chemosensor for Cd2+, which makes it attractive for sensing applications.  相似文献   

3.
A novel Ni2+ optode was prepared by covalent immobilization of thionine, 3,7-diamine-5-phenothiazoniom thionineacetate, in a transparent agarose membrane. Influences of various experimental parameters on Ni2+ sensing, including the reaction time, the solution pH and the concentration of reagents were investigated. Under the optimized conditions, a linear response was obtained for Ni2+ concentrations ranging from 1.00 × 10−10 to 1.00 × 10−7 mol l−1 with an R2 value of 0.9985. The detection limit (3σ) of the method for Ni2+ was 9.30 × 10−11 mol l−1. The influence of several potentially interfering ions such as Ag+, Hg2+, Cd2+, Zn2+, Pb2+, Cu2+, Mn2+, Co3+, Cr3+, Al3+ and Fe3+ on the determination of Ni2+ was studied and no significant interference was observed. The membrane showed a good durability and short response time with no evidence of reagent leaching. The membrane was successfully applied for the determination of Ni2+ in environmental water samples.  相似文献   

4.
A new l-lysine derivative featuring an anthracene unit is synthesized and characterized by elemental analysis, ESI-MS, 1H-NMR, and 13C-NMR. It can selectively bind ATP in acidic aqueous solutions, and be used as a highly selective fluorescent chemosensor for Cu2+ at neutral pH, resulting in fluorescence quenching. According to these characters, two combinational logic circuits are fabricated on a single molecule with three chemical inputs [H+(IN1), OH(IN2), ATP (IN31)] and [H+(IN1), OH(IN2), Cu2+(IN32)], respectively.  相似文献   

5.
A Rhodamine-based fluorescent and colorimetric chemosensor for Fe3+ ion, acetyl rhodamine-hydroxamate (ARH), was designed and synthesized. Upon mixed with Fe3+ in CH3CN-H2O (1:1, v/v), the spirolactam of ARH was opened, which resulted in the dramatic enhancement of both fluorescence and absorbance intensity as well as the color change of the solution. Background metal ions showed small or no interference with the detection of Fe3+. The Job's plot indicated the formation of 1:1 complex between ARH and Fe3+. Confocal laser scanning microscopy experiments showed that ARH could be used to detect Fe3+ in living cells.  相似文献   

6.
A new fluorescent excited state intramolecular proton transfer compound, 2-(2-hydroxy-4-carbaldehydephenyl)benzoxazole (HCPBO), has been synthesized for the detection of Cu2+, based on its fluorescence quenching. In molecular monodispersed solution, the recognition selectivity for Cu2+ was poor as Co2+ and Ni2+ gave similar results in fluorescence quenching. However, the nanoparticles of HCPBO, prepared in ethanol-water (1:4, v/v), greatly enhanced the recognition selectivity for Cu2+. The mechanism was discussed as energy transfer (ET), energy migration (EM) and the more quantity of formed HCPBO-Cu2+ complex than other metal ions in the nanoparticle conditions enhanced the recognition selectivity for Cu2+ together.  相似文献   

7.
In this paper, DNA–Cu2+ complex was electrodeposited onto the surface of glassy carbon (GC) electrode, which fabricated a DNA–Cu2+/GC electrode sensor to detect H2O2 with nonenzyme. Cyclic voltammogram of DNA–Cu2+/GC electrode showed a pair of well-defined redox peaks for Cu2+/Cu+. Moreover, the electrodeposited DNA–Cu2+ complex exhibited excellent electrocatalytic behavior and good stability for the detection of H2O2. The effects of Cu2+ concentration, electrodeposition time and determination conditions such as pH value, applied potential on the current response of the DNA–Cu2+/GC electrode toward H2O2 were optimized to obtain the maximal sensitivity. The linear range for the detection of H2O2 is 8.0 × 10−7 M to 4.5 × 10−3 M with a high sensitivity of −40.25 μA mM−1, a low detection limit of 2.5 × 10−7 M and a fast response time of within 4 s. In addition, the sensor has good reproducibility and long-term stability and is interference free.  相似文献   

8.
In this paper, we developed a microdevice with raised cylinder arrays for capture of Chlorella vulgaris cells and kinetic analysis of stimulation. The cell solution was injected into the chip and held in the gaps between the opposite raised cylinders, forming 0.314 nL volume of suspending droplets. The number of the captured cells in each nanoliter suspending droplet could be controlled within five under our experiment conditions. When the stimulation reagent of copper ion (Cu2+) was injected into the chip and contacted with the suspending droplets, gradient concentration of Cu2+ stimulation to the captured C. vulgaris cells by free diffusion was formed. The bioabsorption kinetic process of C. vulgaris cells under continuous Cu2+ stimulation was investigated and the two-step bioabsorption process was revealed clearly. The Cu2+ toxicity accumulation effect on the cell was also studied by monitoring the fluorescence of cellular chlorophyll.  相似文献   

9.
The synthesis of quantum dot coated with cetyltrimethyl ammonium bromide (CTAB) and gemini surfactant [C12H25N+(CH3)2(CH2)4(CH3)2N+C12H25]·2Br (C12-4-12) in aqueous solution have been described. It is characterized by photoluminescent spectroscopy, UV–vis spectroscopy and transmission electron microscopy (TEM), etc. In comparison with CTAB-coated QDs, the QDs coated with C12-4-12 respond selectively to both transition metal ion copper and fluoride ion in aqueous media. When Cu2+ is bound to C12-4-12-coated QD micelles, the fluorescence intensity is quenched. Linear relationships are found between the relative fluorescence intensity and the concentration of Cu2+ in the range 0–500 μM, which is best described by a Stern–Volmer-type equation. Meanwhile, it is found that F enhanced the luminescence of the C12-4-12-coated QD micelles in a concentration dependence that is described by a Langmuir binding isotherm equation in the range 0–300 μM. The limits of detection of Cu2+ and F are 1.1 and 0.68 μM, respectively. The possible mechanism is discussed.  相似文献   

10.
The significant temperature effects on up-conversion emissions of Nd3+:Er3+:Yb3+ co-doped borosilicate glass excited by a 978-nm semiconductor laser have been investigated and two-stage sensitization of Yb3+ → Er3+ → Nd3+ is discussed. The fluorescence intensity ratio of the near-infrared emission at 813 and 887 nm of Nd3+ ions takes on trustworthy repeatability in the temperature range of 296–670 K because of their strong photoluminescence intensities and the sample is more suitable for sensitive high-temperature sensor.  相似文献   

11.
Exposure to mercury causes severe damage to plants, animals and even humans. Concern over mercury toxicity has encouraged the development of efficient, sensitive, and selective methods for the in vivo detection of mercury. Although a variety of studies have been published describing fluorescence imaging of mercury in animal cells and tissues, no in vivo monitoring has been developed for plant systems until now. In this paper, we report the semi-quantitative fluorescence imaging of Hg2+ ions in a common model plant Arabidopsis thaliana (A. thaliana), with rhodamine B thiolactone (RBS) as a novel Hg2+ probe. The experimental results show that RBS is plant cell wall and cell membrane permeable, and the probe responds selectively to Hg2+ ions instead of the other species in plant systems. Real-time monitoring of Hg2+ absorption in roots of A. thaliana by RBS shows that saturation of Hg2+ uptake could occur in a short period of 3 days at most. The transportation and accumulation of Hg2+ ions in roots of A. thaliana have also been studied, revealing that most of Hg2+ ions reside in root cap and meristematic zone, and only a small amount of Hg2+ ions can reach the maturation zone. This indicates that the interaction of Hg2+ ions with any Hg2+-philic species including proteins in these regions may be responsible for plant poisoning and even death.  相似文献   

12.
Fluorescent organic nanoparticles (FONs) have received considerable attention in the past few years, since the material holds great flexibility in materials synthesis and optical properties. In this study, we report a novel Ag+-selective turn-on fluorescent chemosensor based on the triazolo-thiadiazole (TTD) FONs, which show a significant fluorescence enhancement to silver ions among fourteen metal ions due to the formation of Ag–FONs cation complex, and also exhibit a lowest detectable concentration of 2.87 × 10−9 M. Upon the addition of Cysteine (Cys), a thiol-containing amino acid, the fluorescence intensity of the colloidal solution decreases significantly with a limit detection concentration of 2.58 × 10−7 M, indicating that Cys can form the Ag–Cys complex. Thus FONs are a potential primary sensor toward Ag+ and a secondary sensor toward Cys. The method is a basis for further two-component recognition study of TTD FONs. The possible mechanism is also discussed.  相似文献   

13.
The effects of K-substitution at La-site of La1−xKxCo0.3Fe0.7O3-δ perovskite on its structure and humidity sensing properties were studied in detail. The XRD, SEM-EDS, N2 adsorption-desorption measurements (BET), ICP-AES and XPS were used to characterize the microstructure of La1−xKxCo0.3Fe0.7O3−δ perovskite. The results show that the partial substitution of K at La-site has no obvious effect on the crystal phase, morphology and surface area of samples, but leads to the increased oxygen vacancies and surface enriched K+. The sensitivity of humidity sensor based on all samples was evaluated by measuring the impedance response to the humidity changes. The partial substitution of K at La-site significantly enhanced the humidity sensitivity of La1−xKxCo0.3Fe0.7O3−δ perovskite at low relative humidity (RH). By correlating the structure of material with its sensing properties, the probable reasons that lead to the remarkable sensitivity enhancement of the K-substitution samples compared with the unsubstituted sample (LaCo0.3Fe0.7O3−δ) were given; moreover, the sensing mechanism was also discussed by the complex impedance spectra in detail.  相似文献   

14.
A new triphenylamine-based fluorogenic probe bearing an indolylmethane unit (R1) was developed as a fluorescent chemosensor with high selectivity toward Cu2+ over other cations tested. The new probe R1 only sensed Cu2+ among heavy and transition metal (HTM) ions in CH3CN/H2O (70/30, v/v) solution. The capture of Cu2+ by the receptor resulted in deprotonation of the secondary amine conjugated to the triphenylamine, so that the electron-donation ability of the “N” atom would be greatly enhanced; thus sensor showed a 250 nm change in the new absorption band (from 291 nm to 541 nm) and a large colorimetric response, it also exhibited the large decrease in fluorescence intensity at 378 nm and affinity to Cu2+ over other cations such as Hg2+, Fe3+, Pb2+, Zn2+, Cd2+, Ni2+, Co2+ and Mn2+ make this compound a useful chemosensor for Cu2+ detection in CH3CN/H2O (70/30, v/v) mixture. The probe R1 (c = 1.0 × 10−6 M) displayed significant fluorescence change and colorimetric change upon addition of Cu2+ among the metal ions examined.  相似文献   

15.
This work reports on the Cu2+ chemosensing behaviour of self-organized micro-array structures of a novel donor-acceptor bichromophoric compound anchored onto Ag nanoisland films. The system exhibits quenching of the fluorescence in the presence of Cu2+ ions, with detection range extending from 2 × 10−8 M up to 3 × 10−6 M and limit of detection (LOD) of 8 × 10−9 M. The quenching of fluorescence is accompanied by a quenching of SERS signal from the metal-organic structure, which is consistent with an electron transfer between the copper cation and the organic moiety. The self-organization property of the sensing complexes into micrometric arrays offers great potential for miniaturization and future development of Cu2+ detection systems based on real-time observation of fluorescence or SERS quenching by fluorescence microscopy or microRaman spectroscopy.  相似文献   

16.
A series of Bi3+ and Gd3+ doped ZnB2O4 phosphors were synthesized with solid state reaction technique. X-ray diffraction technique was employed to study the structure of prepared samples. Excitation and emission spectra were recorded to investigate the luminescence properties of phosphors. The doping of Bi3+ or Gd3+ with a small amount (no more than 3 mol%) does not change the structure of prepared samples remarkably. Bi3+ in ZnB2O4 can emit intense broad-band purplish blue light peaking at 428 nm under the excitation of a broad-band peaking at 329 nm. The optimal doping concentration of Bi3+ is experimentally ascertained to be 0.5 mol%. The decay time of Bi3+ in ZnB2O4 changes from 0.88 to 1.69 ms. Gd3+ in ZnB2O4 can be excited with 254 nm ultraviolet light and yield intense 312 nm emission. The optimal doping concentration of Gd3+ is experimentally ascertained to be 5 mol%. The decay time of Gd3+ in ZnB2O4 changes from 0.42 to 1.36 ms.  相似文献   

17.
The Er-Mo:Yb2Ti2O7 nanocrystalline phosphor has been prepared by sol-gel method and used as an optical thermometry. By Mo codoping, the green upconversion (UC) emission intensity increased about 250 times than that of Er:Yb2Ti2O7 under a 976 nm laser diode excitation. It indicates that such green enhancement arises from the high excited state energy transfer (HESET) with the |2F7/2, 3T2> state of Yb3+-MoO42− dimer to the 4F7/2 level of Er3+. The fluorescence intensity ratio (FIR) of the two green UC emissions bands was studied as a function of temperature in a range of 290-610 K, and the maximum sensitivity and the temperature resolution were approximately 0.0074 K−1 and 0.1 K, respectively. It suggests that the Er-Mo:Yb2Ti2O7 nanophosphor with a higher green UC emissions efficiency is a promising prototype for applications in optical temperature sensing.  相似文献   

18.
A fluorescent chemosensor for Fe3+, rhodamine-aminobenzothiazole conjugate has been synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. The sensor demonstrates strong Fe3+- selective orange fluorescence and a pink color switch. Furthermore, the recognizing behavior has been investigated both experimentally and computationally.  相似文献   

19.
Near real-time data from the MODIS satellite sensor was used to detect and trace a harmful algal bloom (HAB), or red tide, in SW Florida coastal waters from October to December 2004. MODIS fluorescence line height (FLH in W m− 2 μm− 1 sr− 1) data showed the highest correlation with near-concurrent in situ chlorophyll-a concentration (Chl in mg m− 3). For Chl ranging between 0.4 to 4 mg m− 3 the ratio between MODIS FLH and in situ Chl is about 0.1 W m− 2 μm− 1 sr− 1 per mg m− 3 chlorophyll (Chl = 1.255 (FLH × 10)0.86, r = 0.92, n = 77). In contrast, the band-ratio chlorophyll product of either MODIS or SeaWiFS in this complex coastal environment provided false information. Errors in the satellite Chl data can be both negative and positive (3-15 times higher than in situ Chl) and these data are often inconsistent either spatially or temporally, due to interferences of other water constituents. The red tide that formed from November to December 2004 off SW Florida was revealed by MODIS FLH imagery, and was confirmed by field sampling to contain medium (104 to 105 cells L− 1) to high (> 105 cells L− 1) concentrations of the toxic dinoflagellate Karenia brevis. The FLH imagery also showed that the bloom started in mid-October south of Charlotte Harbor, and that it developed and moved to the south and southwest in the subsequent weeks. Despite some artifacts in the data and uncertainty caused by factors such as unknown fluorescence efficiency, our results show that the MODIS FLH data provide an unprecedented tool for research and managers to study and monitor algal blooms in coastal environments.  相似文献   

20.
A copper(II) ion selective electrode based on copper(II) salicylaniline Schiff's base complex in styrene-co-acrylonitrile copolymer (SAN) has been developed. The SAN-based membrane electrode containing copper(II)–Schiff's base complex, dioctylphthalate as plasticizer and sodium tetraphenylborate as an anion excluder exhibited a linear response with a Nerstian slope of 30 mV decade−1 within the concentration range of 10−6–10−2 mol dm−3 of Cu2+ ions. The prepared electrode has an average response time of 15 s to achieve 95% steady potential for Cu2+ concentration ranging from 10−4 to 10−2 mol dm−3. The electrode has shown a detection limit of 10−7 mol dm−3 of Cu2+ ion with an average lifetime of 6 months. The selectivity of electrode for Cu2+ ion has been found to be better in comparison to other various interfering ions. The electrode is suitable for use within the pH range of 2.0–7.0 at 1.0×10−3 mol dm−3 of Cu2+ ion. The prepared electrode can be used successfully as an indicator electrode for the potentiometric titration of the Cu2+ ion using EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号