首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We study one weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive codes. It is shown that the image of an equidistant \(\mathbb {Z}_2\mathbb {Z}_4\) code is a binary equidistant code and that the image of a one weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive code, with nontrivial binary part, is a linear binary one weight code. The structure and possible weights for all one weight \(\mathbb {Z}_2\mathbb {Z}_4\) additive codes are described. Additionally, a lower bound for the minimum distance of dual codes of one weight additive codes is obtained.  相似文献   

2.
Twins have been identified in the electron image of polyethylene crystals by means of their contrast behaviour on tilting the specimen and using different diffracted beams for dark field microscopy. Both {310} and {110} twinning has been found. The effect of twinning on Moiré fringes has been investigated and experimental observations confirm the twin features to be correctly interpreted.  相似文献   

3.
The fitting of a function y =\documentclass{article}\pagestyle{empty}\begin{document}$ \sum\nolimits_{i = 1}^n {A_i {\rm{e}}^{\lambda ix}} $\end{document} to experimental data is considered. Integral equations are developed which have the functions \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\nolimits_{i = 1}^n {A_i {\rm{e}}^{\lambda ix}} $\end{document} as their solutions for n = 1, 2, 3, These integral equations are used to find the frequencies λi. Examples are worked out to illustrate the method. The method is shown to be capable of extension to other functions.  相似文献   

4.
Hard-X-ray dark-field imaging using a grating interferometer   总被引:1,自引:0,他引:1  
Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.  相似文献   

5.
This paper shows that it is comparatively simple to analyse algorithms for the numerical integration of the Space discretized equations from structural dynamics when applied to \documentclass{article}\pagestyle{empty}\begin{document}$\ddot x + \mu \dot x\omega ^2 x = p{\rm e}^{ist} $\end{document}, instead of the usual \documentclass{article}\pagestyle{empty}\begin{document}$ \ddot x + \omega ^2 x = 0 $\end{document}, and suggests that this should be done in order to gain some insight into the effect with natural damping and/or a periodic forcing term. The method is illustrated on some three- and four-time-level schemes.  相似文献   

6.
The need for an alternative \({ T}_{1}\) contrast enhancer for magnetic resonance imaging (MRI) has been escalating owing to the toxicity profiles observed with the use of commercial contrast agents. Manganese oxide nanoparticles provide an optimal solution for the problem, as it is an endogenous co-factor for many enzymes in the biological system. In the present work, we have synthesized mesoporous silica nanoparticles encapsulated with manganese oxide nanoparticles as a positive contrast enhancer for MRI applications. Spherical magnetic MnO nanoparticles with divalent oxidation state were also synthesized and utilized as control to compare the efficiency of the nano-hybrid system. MRI showed higher contrast enhancement with the use of nano-hybrid and the relaxivity value for \({ T}_{1}\)-weighted imaging was calculated to be \(2.6~\hbox {mg ml}^{-1}~\hbox {s}^{-1}\). Also, the developed system was validated for its usefulness as a therapeutic system through adsorption studies. Therefore, the nano-hybrid has the potential to be a competent MRI contrast enhancer that could be used for theranostic applications.  相似文献   

7.
Electropositive atoms of aluminum adsorbed on a (\({{P_{As_4 } } \mathord{\left/ {\vphantom {{P_{As_4 } } {P_{Ga} }}} \right. \kern-\nulldelimiterspace} {P_{Ga} }} = \gamma \))Re surface exhibit competition with non-metals (Si, C) for the adsorption sites at high temperatures (1200–1500 K). In this system, silicon displaces aluminum, while aluminum displaces carbon. The mechanism of this competition is fully analogous to that observed previously for Si, C, and S atoms on the surface of refractory metals, despite the fact that aluminum atoms (in contrast to the nonmetals) in the adsorbed state possess a positive charge.  相似文献   

8.
Zhang J  Pitter MC  Liu S  See C  Somekh MG 《Applied optics》2006,45(31):7977-7986
We report bright-field and dark-field surface-plasmon imaging using a modified solid immersion lens and a commercial objective of moderate NA in the epi configuration. The contrast and resolution are extremely good, giving well-resolved images of protein monolayers both in air and in water. We also describe a two-part solid immersion lens that allows the sample to be moved without degrading the image quality in any observable way. The merits of the two-part lens are discussed and compared to commercially available microscope objectives. Finally, we introduce a simple Green's function model that illustrates the key features of both bright-field and dark-field surface-plasmon imaging.  相似文献   

9.
We have studied the effect of the pelletization pressure on microstructural and electrical transport properties of superconducting ceramics with starting composition given by the formula \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2.5}\text {Cu}_{3.5}\text {O}_{10+\delta }\). The experimental data of electrical measurements was processed in order to obtain the weak-link resistivity, the orientation probability of the grains’ a-axes along a certain preferential direction, the slope of the linear part in the temperature dependence of the ab-planes resistivity, and the intrinsic effective anisotropy of the grains, of each sample. In contrast with the behaviour of \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2}\text {Cu}_{3}\text {O}_{10+\delta }\) ceramics, the Ca, Cu enriched samples exhibit a reduction of their effective anisotropy at sample level and weak links resistivity with increasing compacting pressures. In addition, a compacting pressure of around 488 MPa may affect considerably the electrical and structural parameters of the material. The results suggest that a combined effect of the pelletization pressure and the doping with Ca and Cu can be used to improve the electrical transport properties of these materials for technological applications.  相似文献   

10.
In grating-based x-ray phase sensitive imaging, dark-field contrast refers to the extinction of the interference fringes due to small-angle scattering. For configurations where the sample is placed before the beamsplitter grating, the dark-field contrast has been quantified with theoretical wave propagation models. Yet when the grating is placed before the sample, the dark-field contrast has only been modeled in the geometric optics regime. Here we attempt to quantify the dark-field effect in the grating-before-sample geometry with first-principle wave calculations and understand the associated particle-size selectivity. We obtain an expression for the dark-field effect in terms of the sample material's complex refractive index, which can be verified experimentally without fitting parameters. A dark-field computed tomography experiment shows that the particle-size selectivity can be used to differentiate materials of identical x-ray absorption.  相似文献   

11.
An interative method to fit the function \documentclass{article}\pagestyle{empty}\begin{document}$\mathop \[y = \sum\nolimits_i^n { = 1} a_i e^{lix}\] $\end{document} to data is considered. The technique used is that of inversion of a linear differential operator with constant coefficients. This method reproduces the parameters for mathematically precise data and gives satisfactory results when the data are affected by random errors.  相似文献   

12.
The {0001} face develops on the habit of self-frequency doubling laser crystal Yb: YAl3(BO3)4 (YbYAB) only under high growth rate condition, and its morphology is rough. To study the growth mechanism of {0001} face, we have observed the growth morphology on {0001} polishing section by atomic force microscopy (AFM). A series of AFM images captured in different growth durations on the {0001} polishing section reflect the crystal growth process. It is shown that the growth morphology on the {0001} polishing section was rough with many hillocks at the first growth stage, and it can become smooth finally, although the growth morphology on the {0001} face develoFed naturally on YbYAB crystal habit is always rough. On the smooth {0001} surface formed at the last growth stage, there aresome triangular pits. This fact is different from that of hillocks in most crystal growth morphologies. AFM can easilydistinguish the pits or hillocks on the surface, but differential interfere contrast microscopy (DIC) can not do. Theorientation of the triangular pits is just the opposite to the triangular {0001} faces. The chemical etching patternis also composed of this kind of triangular pits. These growth morphology and etching pattern of the {0001} facesshow 3m symmetry, but the point group of YbYAB crystal is 32. The symmetric contradiction between morphologyand point group does not exist for quartz, although whichsurface morphology we can distinguish the right form ormorphology we can not do. The reason for the symmetricand its point group is not known yet.has the same point group as YbYAB. From quartz {0001}left form of the crystal, but from YbYAB {0001} surfacecontradiction between YbYAB {0001} surface morphology and its point group is not known yet.  相似文献   

13.
Scanning transmission electron microscopy (STEM) has been suggested to have advantages over conventional transmission electron microscopy (CTEM) for the observation of diffraction contrast features and diffraction patterns from radiation-sensitive crystalline polymers. For many applications it is desirable to obtain successive diffraction patterns from very small adjacent areas. Several microarea diffraction techniques are available using CTEM and STEM. The most useful technique is scanning microarea diffraction used in conjunction with STEM dark-field imaging. Using this technique we have obtained diffraction patterns from regions as small as 100 nm×100 nm for a 12 nm thick polyethylene single crystal. Adjacent microarea diffraction patterns can be obtained while only radiation-damaging the diffracting region. This allows mapping of the specimen crystallography on a very fine scale as well as allowing one to obtain a diffraction pattern for selecting various STEM dark-field conditions while only damaging a small portion of the specimen before the dark-field image is recorded.  相似文献   

14.
Through-thickness texture gradient in AA 7055 aluminum alloy   总被引:1,自引:0,他引:1  
Through-thickness texture gradient in AA 7055 aluminum alloy rolled plate has been investigated using the electron back-scattered diffraction (EBSD) technique. Quantitative analyses of texture in five layers from the surface to the center of the plate were performed. A pronounced texture variation through the plate thickness was found. In the center layer, a typical β fiber texture running from {112} <111> orientation through {123} <634> orientation to {011} <211> orientation was found. Near the surface, in contrast, shear type textures including {001} <110> orientation, {112} <110> orientation and {111} <110> orientation were dominating. In particularly, when the shear type textures reached the maximum in both intensity and content, the β fiber became minimums.  相似文献   

15.
The particular physicochemical properties of nanomaterials are able to elicit unique biological responses. The property activity relationship is usually established for in-depth understanding of toxicity mechanisms and designing safer nanomaterials. In this study, the toxic role of specific crystallographic facets of a series of polyhedral lead sulfide (PbS) nanocrystals, including truncated octahedrons, cuboctahedrons, truncated cubes, and cubes, was investigated in human bronchial epithelial cells (BEAS-2B) and murine alveolar macrophages (RAW 264.7) cells. {100} facets were found capable of triggering facet-dependent cellular oxidative stress and heavy metal stress responses, such as glutathione depletion, lipid peroxidation, reactive oxygen species (ROS) production, heme oxygenase-1 (HO-1) and metallothionein (MT) expression, and mitochondrial dysfunction, while {111} facets remained inert under biological conditions. The {100}-facet-dependent toxicity was ascribed to {100}-facet-dependent lead dissolution, while the low lead dissolution of {111} facets was due to the strong protection afforded by poly(vinyl pyrrolidone) during synthesis. Based on this facet-toxicity relationship, a “safe-by-design” strategy was designed to prevent lead dissolution from {100} facets through the formation of atomically thin lead-chloride adlayers, resulting in safer polyhedral PbS nanocrystals.
  相似文献   

16.
TiO2 nanosheets with highly reactive {001} facets ({001}-TiO2) have attracted great attention in the fields of science and technology because of their unique properties. In recent years, many efforts have been made to synthesize {001}-TiO2 and to explore their applications in photocatalysis. In this review, we summarize the recent progress in preparing {001}-TiO2 using different techniques such as hydrothermal, solvothermal, alcohothermal, chemical vapor deposition (CVD), and sol gel-based techniques. Furthermore, the enhanced efficiency of {001}-TiO2 by modification of carbon materials, surface deposition of transition metals, and non-metal doping is reviewed. Then, the applications of {001}-TiO2-based photocatalysts in the degradation of organic dyes, hydrogen evolution, carbon dioxide (CO2) reduction, bacterial disinfection, and dye-sensitized solar cells are summarized. We believe this entire review on TiO2 nanosheets with {001} facets can further inspire researchers in associated fields.
  相似文献   

17.
We report on the alloying of epitaxial Co/Pt core-shell nanoparticles using transmission electron microscopy (TEM) and electron diffraction. In as-deposited nanoparticles followed by in situ annealing at 823 K for 10.8 ks, high-angle annular dark-field (HAADF) imaging by scanning TEM (STEM) clearly revealed formation of Co-shell/Pt-core structures due to the large atomic number (Z) difference between Co (Z = 27) and Pt (Z = 78). We identified a formation of locally ordered areas of the L10 ordered phase at the core of the nanoparticles. After ex situ annealing at 873 K for 0.6 ks, some of the ordered areas showed complicated contrasts in the HAADF-STEM images. Based on image simulations, we found that these atypical contrasts arise from the stacking of two orthogonal variants of the L10 phase in the electron beam direction. Furthermore, the simulation showed that image contrast strongly reflects the structure of the variant located closer to the beam entrance rather than to the bottom side. Solid solution phase was formed by further annealing at 873 K for 3.6 ks, while high-density {111} stacking faults were observed inside the Co-Pt alloy nanoparticles. Magnetic coercivity remained at values as low as ~ 15.9 kA/m at 300 K, irrespective of the formation of local L10 ordered areas and/or a high-density stacking faults.  相似文献   

18.
Thin foils of zinc sulfide in the wurtzite form, grown on {112&#x0304;0}, (0001), {11&#x0304;00} habit planes were studied by transmission electron microscopy. Direct optical evidence is presented to show that dissociation dislocations are present in the basal plane, transforming a lamella into the sphalerite structure. The non basal plane faults are founded lying on {112&#x0304;0} and {11&#x0304;00} planes. The contrast effects associated with the faults disappear on {11&#x0304;00} habit planes, according to the model of domain structure with a displacement vector Aσ or Aσ+[0001] c2, proposed by S. Amelinckx et al.  相似文献   

19.
It is possible to set up equations of the formB(H) = a_{0} + a_{1} e^{-alpha_{1}H} + a_{2} e^{-alpha_{2}H} + a_{3} e^{-alpha_{3}H} + a_{4} e^{-alpha_{4}H}on an analog computer to fit accurately aB-Hcurve of any magnetic material over the whole range from zero to the knee of the curve to the saturation part of the curve.  相似文献   

20.
The anhysteretic remanencebar{M}_{ar}(H_{o},T)of solidified suspensions of magnetic particles with predominant shape anisotropy is calculated from first principles for small dc fields Hoand arbitrary temperatureT < T_{B}(blocking temperature), describing the particle interactions by a mean field and assuming constant decrement of the ac field,2H_{d}per cycle. ForH_{d}< 2H_{o}, the anhysteretic distribution of particle magnetizations is found to be subject to the condition that the net internal dc fieldbar{H}_{i}is a minimum, and, for small Ho, to the condition,bar{H}_{i} = 0. The theory yieldsbar{M}_{ar}(H_{o},T)as a unique function of independently measurable static magnetic material properties, i.e., it contains no adjustable parameters and is hence quantitatively related to experimental data. Further, according to theory, ifbar{M}_{ar}(H_{o},T,T_{m})denotesbar{M}_{ar}as acquired in Hoat T and measured atT_{m}, bar{M}_{ar}(H_{o},T,T_{m} = T)is independent ofTforH_{d} ll 2H_{o}, andbar{M}_{ar}(H_{o},T,T_{m} neq T) = [M_{s}(T_{m})/M_{s}(T)] cdot bar{M}_{ar}(H_{o},T,T_{m} = T). The thermoremanent magnetization acquired in Hoand measured at a temperatureT_{m} ll T_{B},bar{M}_{thr}(H_{o},T_{m}), is related tobar{M}_{ar}(H_{o},T = T_{m}, T_{m})bybar{M}_{thr}(H_{o},T_{m}) = [M_{s}(T_{m})/M_{s}(T_{B})]bar{M}_{ar}(H_{o},T=T_{m},T_{m}), where TBis the blocking temperature below whichbar{M}_{thr}becomes thermally stable. Up to a constant factor of about 2, the theoretical results agree quantitatively with the experimental data on all materials that correspond to the premises of the theory, i.e., solidified suspensions, tapes in particular, of particles having predominant shape anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号