首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nowadays, more attention is drawn to the industrial products made of composite materials. Their anisotropy and inhomogeneity cause a difficulty in predicting their behavior during machining. With the purpose of understanding and zooming the contact area tool/workpiece, this paper presents a study that evaluate the transverse and longitudinal roughness measurements for knurled tool in slotting of multidirectional carbon fiber-reinforced plastic (CFRP) laminate. By transverse (respectively longitudinal) roughness we mean roughness measured perpendicular to the advance direction (respectively in the advance direction). A theoretical model of transverse roughness is given: it highlights its dependance of only tool geometry. Experiments were carried out to validate the model, to study how longitudinal roughness measurements depends on cutting conditions (cutting speed and feed per tooth) and to predict the surface topography.  相似文献   

2.
The present paper is an attempt to predict the effective milling parameters on the final surface roughness of the work-piece made of Ti-6Al-4V using a multi-perceptron artificial neural network. The required data were collected during the experiments conducted on the mentioned material. These parameters include cutting speed, feed per tooth and depth of cut. A relatively newly discovered optimization algorithm entitled, artificial immune system is used to find the best cutting conditions resulting in minimum surface roughness. Finally, the process of validation of the optimum condition is presented.  相似文献   

3.
This article is concerned with the cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy. The experiments were conducted with coated carbide cutting tools under dry cutting conditions. The effects of cutting parameters on the cutting forces, tool wear and surface integrity (including surface roughness, microhardness and microstructure beneath the machined surface) were investigated. The velocity effects are focused on in the present study. The experimental results show that the cutting forces in three directions increase with cutting speed, feed per tooth and depth of cut (DoC). The widths of flank wear VB increases rapidly with the increasing cutting speed. The surface roughness initially decreases and presents a minimum value at the cutting speed 200 m/min, and then increases with the cutting speed. The microstructure beneath the machined surfaces had minimal or no obvious plastic deformation under the present milling conditions. Work hardening leads to an increment in micro-hardness on the top surface. Furthermore, the hardness of machined surface decreases with the increase of cutting speed and feed per tooth due to thermal softening effects. The results indicated that the cutting speed 200 m/min could be considered as a critical value at which both relatively low cutting forces and improved surface quality can be obtained.  相似文献   

4.
Further progress in green cutting applications depends on the innovativeness of machine tools, advances in tool development, and, especially, more complex tool and cutting technologies. Therefore, this study analyzes the factors influencing high-speed cutting performance. Grey relational analysis and the Taguchi method are then incorporated in the experimental plan with high-speed milling of AISI H13 tool steel. Experimental results indicate that the contributions of tool grinding precision, geometric angle, and cutting conditions to the multiple quality characteristics of high-speed milling for AISI H13 tool steel are 11.75, 9.80, and 73.11 %, respectively. For rough machining, tool life and metal removal volume are the primary evaluation indicators and cutting parameters should be prioritized, especially cutting speed and feed per tooth. In finish machining, workpiece surface roughness is the primary evaluation indicator. Besides the selection of cutting parameters, the design and grinding of endmill are critical factors, especially the design and grinding of relief angles.  相似文献   

5.
应用硬质合金球头铣刀对P20(3Cr2Mo)模具钢进行了高速铣削精加工试验,研究了加工参数(包括主轴转速、每齿进给量和径向进给量)对曲面粗糙度的影响情况,分析了不同加工路径下粗糙度的形成机理。研究结果表明,高速条件下,主轴转速对加工表面粗糙度的影响不明显;每齿进给量和径向进给量对纵向和横向粗糙度的影响呈线性增加关系;为得到较小的粗糙度值,走刀路径应选择被加工曲面曲率半径变化大的方向为进给方向。  相似文献   

6.
An experimental investigation was conducted to analyze the effect of cutting parameters (cutting speed, feed rate and depth of cut) and workpiece hardness on surface roughness and cutting force components. The finish hard turning of AISI 52100 steel with coated Al2O3 + TiC mixed ceramic cutting tools was studied. The planning of experiment were based on Taguchi’s L27 orthogonal array. The response table and analysis of variance (ANOVA) have allowed to check the validity of linear regression model and to determine the significant parameters affecting the surface roughness and cutting forces. The statistical analysis reveals that the feed rate, workpiece hardness and cutting speed have significant effects in reducing the surface roughness; whereas the depth of cut, workpiece hardness and feed rate are observed to have a statistically significant impact on the cutting force components than the cutting speed. Consequently, empirical models were developed to correlate the cutting parameters and workpiece hardness with surface roughness and cutting forces. The optimum machining conditions to produce the lowest surface roughness with minimal cutting force components under these experimental conditions were searched using desirability function approach for multiple response factors optimization. Finally, confirmation experiments were performed to verify the pertinence of the developed empirical models.  相似文献   

7.
黛杰在中国     
<正>经过十余年的努力,黛杰产品在中国市场的知名度和销售量取得了傲人的成绩。日本黛杰工业株式会社于1938年成立,作为从原料粉末到成品产出一贯制专业硬质合金厂家,产品性能和品牌知名度一直深受广大用户的拥戴。从2002年开始,黛杰在中国上海设立代表处,专门针对中国客户提供售后服务。继2006年设立广东事务所后,2009、2010、2013年又分别在大连、武汉、成都设立联络处。此外,黛杰汉金(沧州)精密模具有限公司于2013年10月在河北省黄骅市正式运营投产。  相似文献   

8.
采用双杯挤压方法研究了成形温度、应变速率等工艺参数对Zr55Al10Ni5Cu30块体非晶合金在过冷液相区塑性成形时模具和零件之间的摩擦行为的影响。采用有限元模拟方法获得大块非晶合金双杯挤压的摩擦因数标定曲线,有限元模拟中非晶合金的变形采用Kawamura的本构模型,将高温压缩实验的数据拟合,获得本构模型中的参数,结果表明非晶合金在过冷液相区内变形的摩擦因数在0.2~0.7之间。当应变速率较低时,随着温度的升高,摩擦因数总体上降低;而当应变速率较高时,随着温度的升高,摩擦因数先略有上升,然后急剧下降。当温度较低时,随着应变速率增大,摩擦因数显著增大,而在高温时,随着应变速率增大,摩擦因数略微有所减小。按照现代摩擦理论对非晶合金在过冷液相区内成形的摩擦机理进行了分析,认为黏着是摩擦的主导因素。  相似文献   

9.
CNC end milling is a widely used cutting operation to produce surfaces with various profiles. The manufactured parts’ quality not only depends on their geometries but also on their surface texture, such as roughness. To meet the roughness specification, the selection of values for cutting conditions, such as feed rate, spindle speed, and depth of cut, is traditionally conducted by trial and error, experience, and machining handbooks. Such empirical processing is time consuming and laborious. Therefore, a combined approach for determining optimal cutting conditions for the desired surface roughness in end milling is clearly needed. The proposed methodology consists of two parts: roughness modeling and optimal cutting parameters selection. First, a machine learning technique called support vector machines (SVMs) is proposed for the first time to capture characteristics of roughness and its factors. This is possible due to the superior properties of well generalization and global optimum of SVMs. Next, they are incorporated in an optimization problem so that a relatively new, effective, and efficient optimization algorithm, particle swarm optimization (PSO), can be applied to find optimum process parameters. The cooperation between both techniques can achieve the desired surface roughness and also maximize productivity simultaneously.  相似文献   

10.
Compared to metallic materials, carbon fiber-reinforced plastics (CFRPs) have lower thermal conductivity and minor thermal expansion coefficient. Despite this, their machining can generate accuracy errors if the cutting temperature is not controlled. In this paper, an experimental study of slotting of multidirectional CFRP laminate (G803/914) with three micrograin carbide burr tools with different geometries is considered in order to investigate tool-workpiece contact point temperature, chip temperature, machined surface damage, subsurface defects and tool degradation. The experiment is made on a computer numerical control (CNC) machine with cutting speed ranging from 80 to 200 m/min and feed per tooth from 0.008 to 0.060 mm/rev/tooth. The data were analyzed in order to establish empirical models showing the dependence of cutting temperature on tool geometry and cutting conditions. Based on the results, it is concluded that cutting speed is the factor influencing cutting temperature the most, the heat generated during slotting is removed mainly by chips and the chip temperature is greater than the tool-workpiece contact temperature of about 18.5°C on average for the three burr tools.  相似文献   

11.
选用涂层硬质合金刀具对300M超高强度钢进行高速铣削试验,通过单因素试验和多因素正交试验法,得出铣削参数(主轴转速、每齿进给量、铣削深度)对切削力及表面粗糙度的影响规律及主次关系。对正交试验结果做最小二乘法分析,建立切削力及表面粗糙度与铣削参数之间的经验模型;对经验模型的回归方程及系数做显著性检验,并对其进行参数优化,得出铣削参数的最优组合。结果表明:主轴转速和铣削深度对切削力的作用较大,而每齿进给量对其影响相对较弱;每齿进给量对表面粗糙度作用最强,铣削深度次之,主轴转速对其作用最弱。  相似文献   

12.
为有效降低高速切削中铝合金的表面粗糙度值,通过多因素正交试验和单因素试验对各铣削参数进行研究,结果显示:各参数对铝合金表面粗糙度影响程度从大到小的顺序是:切削深度、主轴转速、每齿进给量、行距,且转速为18000r/min,每齿进给量为0.075mm,行距和每齿进给量一致,选择较小的切削深度时,在铝合金表面可获得较好的加工质量。  相似文献   

13.
使用硬质合金球头铣刀对铝合金叶轮叶片进行了高速铣削试验。研究了切削速度和进给量对加工表面粗糙度的影响。试验结果表明:在高速加工中,每齿进给量比铣削行距对加工表面质量的影响更大;提高切削速度和减少每齿进给量有利于降低加工表面粗糙度。但当切削速度超过某一范围后,进一步提高速度对降低表面粗糙度的作用并不明显;每齿进给量减小到一定范围后,表面粗糙度反而会有所增加;对于铝合金叶片曲面的加工,合理选择切削速度、进给量和行距可获得较低的表面粗糙度值和较高的加工效率。  相似文献   

14.
针对高速切削新型合金铸铁类难加工材料时,因刀具磨损严重而导致刀具成本高的问题,采用成本较低的硬质合金刀具对Cr15Mo工件进行了铣削实验,研究了切削参数对切削力和表面粗糙度的影响,获得了可达到磨削加工效果(Ra=0.4 μm)的最佳参数组合,即切削速度vc=800 m/min,轴向切削深度ap=0.4 mm和进给量f=0.6 mm/r。基于稳健设计优化原理对实验结果进行了理论分析,研究结果表明:理论分析结果与实验结果具有很好的一致性,为同时实现高速、高质量和低成本加工的多目标参数优化方法提供了一种有效的途径。  相似文献   

15.
In this study, the effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and resultant forces in the finish hard turning of AISI H13 steel were experimentally investigated. Cubic boron nitrite inserts with two distinct edge preparations and through-hardened AISI H13 steel bars were used. Four-factor (hardness, edge geometry, feed rate and cutting speed) two-level fractional experiments were conducted and statistical analysis of variance was performed. During hard turning experiments, three components of tool forces and roughness of the machined surface were measured. This study shows that the effects of workpiece hardness, cutting edge geometry, feed rate and cutting speed on surface roughness are statistically significant. The effects of two-factor interactions of the edge geometry and the workpiece hardness, the edge geometry and the feed rate, and the cutting speed and feed rate also appeared to be important. Especially honed edge geometry and lower workpiece surface hardness resulted in better surface roughness. Cutting-edge geometry, workpiece hardness and cutting speed are found to be affecting force components. The lower workpiece surface hardness and honed edge geometry resulted in lower tangential and radial forces.  相似文献   

16.
The work refers to analysis of various factors affecting surface roughness after end milling of hardened steel in high-speed milling (HSM) conditions. Investigations of milling parameters (cutting speed v(c) , axial depth of cut a(p) ) and the process dynamics that influence machined surface roughness were presented, and a surface roughness model, including cutter displacements, was elaborated. The work also involved analysis of surface profile charts from the point of view of vibrations and cutting force components. The research showed that theoretic surface roughness resulting from the kinematic-geometric projection of cutting edge in the workpiece is significantly different from the reality. The dominant factor in the research was not feed per tooth f(z) (according to the theoretical model) but dynamical phenomena and feed per revolution f.  相似文献   

17.
This paper describes a procedure to calculate the machining conditions, such as the cutting speed, feed rate and depth of cut for turning operations with minimum production cost or the maximum production rate as the objective function. The optimum number of machining passes and the depth of cut for each pass is obtained through the dynamic programming technique and optimum values of machining conditions for each pass are determined based on the objective function criteria by search method application to the feasible region. Production cost and production time values are determined for different workpiece and tool material for the same input data. In the optimization procedure, the objective functions are subject to constraints of maximum and minimum feed rates and speeds available, cutting power, tool life, deflection of work piece, axial pre-load and surface roughness. By graphical representation of the objective function and the constraints in the developed software, the effects of constraints on the objective function can be evaluated. The parameters that are assumed to be most effective in determining the optimum point can easily be changed and the revised graph can be inspected for possible improvements in the optimum value.  相似文献   

18.
车铣加工技术是近年发展起来的先进切削加工技术之一。本文采用多因素正交试验法,进行了一系列的正交车铣TC4钛合金切削试验,研究了车铣切削用量与表面粗糙度之间的变化规律。通过方差分析确定了各因素对表面粗糙度的影响大小的主次顺序,每齿进给量和偏心量对表面粗糙度的影响较大。采用回归分析原理,建立了表面粗糙度的预测模型,根据统计检验结果表明,已加工表面粗糙度预测模型呈高度显著检验状态,具有很高的可信度。  相似文献   

19.
Empirical models for machining time and surface roughness are described for exploring optimized machining parameters in turning operation. CNC turning machine was employed to conduct experiments on brass, aluminum, copper, and mild steel. Particle swarm optimization (PSO) has been used to find the optimal machining parameters for minimizing machining time subjected to desired surface roughness. Physical constraints for both experiment and theoretical approach are cutting speed, feed, depth of cut, and surface roughness. It is observed that the machining time and surface roughness based on PSO are nearly same as that of the values obtained based on confirmation experiments; hence, it is found that PSO is capable of selecting appropriate machining parameters for turning operation.  相似文献   

20.
Special features as noncircular hole shapes are manufactured by the broaching process. The rise per tooth varies in different zones of the broaching tool. In this article, the effects of the two main process parameters (cutting speed and rise per tooth) on surface integrity (surface roughness, micro-hardness) and chip morphology will be studied. The experiments have been done on AA7075-T651 aluminum alloy. To investigate the effect of rise per tooth, one of the cutting edges of broaching tool is separated and the broaching process is implemented for nine samples. The samples are broached with three different cutting speeds (6, 12 and 18 m/min) and three rise per tooth (0.02, 0.05 and 0.1?mm). Also, the effect of cutting speed is investigated with a broaching needle (rise per tooth 0.1?mm). The results show that best surface roughness is obtained at cutting speed 12 m/min. The surface roughness will be improved by decreasing the rise per tooth. Also, the surface hardness decreases by increasing the cutting speed. The surface integrity (surface roughness and surface hardness) is comparable for single edge cutting tool and broaching needle. Continuous chips are formed during the broaching process and decreasing the cutting speed cause more compression of the chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号