首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The pTxy phase equilibria in the Cd–Zn–Te system are analyzed. The pT and Txyprojections of the pTxy phase diagram and a Txy isobar (for pressures at which Cd1–x Zn x Te1 ± solid solutions sublime congruently in terms of Te) are mapped out. The key features of the sublimation behavior of the solid solution are examined. The pT projection is studied by static vapor pressure measurements at temperatures from 700 to 1300 K and pressures of up to 101.3 kPa. The pT sections of the phase diagram are constructed for x = 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 0.90, and 1. The solid solution containing 35 mol % ZnTe is found to phase-separate at 473 K.  相似文献   

2.
Vaporization processes in the Sb–O system are studied by Knudsen cell mass spectrometric measurements. The results indicate that Sb2O4 sublimes congruently and is the most stable oxide in the system. Experimental data are used to evaluate the enthalpies of formation of Sb2O3, Sb2O4, and Sb6O13 and to construct the pTx phase diagram of the Sb–O system.  相似文献   

3.
The low-cyclic fatigue (LCF) behaviour of an AA2139 alloy belonging to the Al–Cu–Mg–Ag system was investigated under T6 and T840 conditions. The T840 treatment involves cold rolling with a 40% reduction prior to ageing, and this was effective in increasing the tensile strength of the alloy. Under cyclic loading at total strain amplitudes (εac) of ±0.4 to ±1.0%, the mechanical behaviour is defined as the prevalence of elastic over plastic deformation processes under both the T6/T840 conditions. The initial weak hardening during one to two cycles of loading at εac?>?0.55% and an insignificant softening upon following the cyclic loading to fracture was observed for the T6/T840 conditions. The LCF behaviour of the alloy under the T6/T840 conditions is described by the Basquin–Manson–Coffin relationship.

This paper is part of a Themed Issue on Aluminium-based materials: processing, microstructure, properties, and recycling.  相似文献   

4.
In the present work, a systematic investigation of crystallographic texture evolution and strain hardening behaviour was undertaken to comprehend the deformation behaviour in the presence of T1 (Al2CuLi) precipitates. Characteristic texture components symbolising multiple slip condition such as Copper and S were observed upon rolling which is in contrast with other Al alloys containing shearable precipitates. Strain hardening ability was also observed to be remarkably high in the presence of T1 precipitates. The texture and strain hardening results are compared with another age hardenable Al alloy (Al–Mg–Si alloy) containing shearable precipitates to clearly bring out the difference in the nature of T1 precipitates.  相似文献   

5.
Abstract

We report herein the use of an exonuclease III and G-quadruplex probe to construct a G-quadruplex-based luminescence detection platform for Hg2+. Unlike common DNA-based Hg2+ detection methods, when using the dsDNA probe to monitor the hairpin formation, the intercalation of the dsDNA probe may be influenced by the distortion of dsDNA. This ‘mix-and-detect’ methodology utilized the G-quadruplex probe as the signal transducer and is simple, rapid, convenient to use and can detect down to 20 nM of Hg2+.  相似文献   

6.
Abstract

The creep behaviour and the microstructural evolution of a 9Cr–Mo–Nb–V (T91) steel were extensively evaluated by means of short term constant load creep tests and TEM analysis. Statistical analysis of the microstructural data revealed that the precipitated phases M23 C6 (where M is a metal, mainly Cr or Fe) and MX (where M is Nb or V, and X is C and/or N) were subject to coarsening during creep exposure. The coarsening law and its dependence on applied stress were identified, and the model was used to predict the magnitude of the Orowan stress at the time corresponding to the minimum creep rate. The minimum creep rate dependence on applied stress at 873 K was described by incorporating the threshold stress concept in a power law with stress exponent n = 5. In the resulting phenomenological model, the strengthening effect of the dispersed phases was thus expressed by a threshold stress proportional to the Orowan stress.  相似文献   

7.
Abstract

The microstructure of the weld was examined by light and electron microscopy (scanning and transmission). The various regions, i.e. thermomechanically affected zone, heat affected zone and unaffected base material, were studied in detail to better understand the microstructural evolution during friction stir welding and its impact on basic mechanical properties. The change in morphology of the strengthening phases reflected the relative temperature profile and the amount of deformation across the welded joint during the stir welding process. The centre of the weld was composed of fine grains and coarse particles identified mainly as MgZn2. In the thermomechanically and heat affected zones, the grain size was not uniform, and the strengthening phases filled the grain interiors, while grain boundaries were surrounded by precipitation free zones. The size of the strengthening phase decreased towards the base material. The hardness profile of the friction stir weld displayed the lowest hardness on the retreating side. Tensile properties of the weld itself were superior to those for material containing weld.  相似文献   

8.
In this article, the problem of exponential stability and stabilization is investigated for Takagi–Sugeno fuzzy time-varying delay systems with parameter uncertainties. Improved conditions are presented in terms of linear matrix inequalities (LMIs). The desired fuzzy controller is obtained by solving these LMIs. In addition, the new integral inequalities can derive less conservative stability criteria. In the end, some numerical simulations are given to illustrate the validity of the proposed methodology.  相似文献   

9.
Osteoblasts or stem cells have been delivered into injectable calcium phosphate cement (CPC) to improve its effectiveness and biological function. However, the osteogenic potential of the new construct in vivo has been rarely reported, and there are no reports on alginate–chitosan microencapsulated osteoblasts mixed with CPC. This study aimed to develop alginate–chitosan microencapsulated mouse osteoblast MC3T3-E1 cells (AC-cells), evaluate the osteogenic potential of a calcium phosphate cement complex with these AC-cells (CPC-AC-cell), and trace the implanted MC3T3-E1 cells in vivo. MC3T3-E1 cells were embedded in alginate microcapsules, cultured in osteogenic medium for 7 days, and then covered with chitosan before mixing with a paste of β-tricalcium phosphate/calcium phosphate cement (β-TCP/CPC). The construct was injected into the dorsal subcutaneous area of nude mice. Lamellar-bone-like mineralization, newly formed collagen and angiogenesis were observed at 4 weeks. At 8 weeks, areas of newly formed collagen expanded; further absorption of β-TCP/CPC and osteoid-like structures could be seen. Cell tracing in vivo showed that implanted MC3T3-E1 cells were clearly visible at 2 weeks. These in vivo results indicate that the novel injectable CPC-AC-cell construct is promising for bone tissue engineering applications.  相似文献   

10.
Abstract

Four aluminium alloys of different zinc/magnesium ratio have been studied under various extrusion conditions. The alloys were cast in steel book moulds and subjected to initial thermomechanical treatments. Studies were made of hot extrusions and cold hydrostatic extrusions and in each case the changes in the extrusion parameters were analysed. An attempt has been made to explain some of the extrusion defects which appeared in various extruded sections. The extrusion speed was found to be crucial, since sections developed surface cracks at higher speeds. The extrusion speed was also found to vary inversely with the extrusion ratio, with higher speeds at low ratios. A well defined solute–depleted weld zone was observed on each of the four faces of a square tube extruded using a porthole die. Thermal treatment was not found to improve this weak weld zone. Tubes extruded using a floating-mandrel die withstood pressure testing up to 550 MPa.

MST/43  相似文献   

11.
12.
This study analyses the research output of Nepal in S&T during 2001–10 on several parameters including its growth and country publications share in the world’s research output, country publications share in various subjects in the national and global context, pattern of research communication in core domestic and international journals, geographical distribution of publications, share of international collaborative publications at the national level as well as across subjects and characteristics of high productivity institutions, authors and cited papers. The Scopus Citation Database has been used to retrieve the publication data for 10 years.  相似文献   

13.
The phase relations in the Bi–(Pb)–Sr–Ca–Cu–Sc–O system were studied near Bi2Sr2CaCu2O8 + (Bi-2212) and (Bi,Pb)2Sr2Ca2Cu3O10 + (Bi-2223) between 850 and 930°C. The introduction of Sc led to the formation of a new compound Sr2ScBiO6, which coexisted with Bi-2212 and Bi-2223. Using crystallization from a peritectic melt at different cooling rates, we obtained Bi-2212 matrix composites containing finely dispersed Sr1.9Ca0.1ScBiO6inclusions, with T cattaining 89 K. The T cof the Bi-2223–Sr1.9Ca0.1ScBiO6superconducting ceramic prepared by solid-state sintering of a Bi–(Pb)–Sr–Ca–Cu–Sc–O precursor was 108.5 K.  相似文献   

14.
La2 – x Ce x NiO y and Sr2 – x Ce x NiO y materials were prepared, and their properties were studied. Nearly single-phase Sr2 – x Ce x NiO y samples (tetragonal K2NiF4 structure) could be obtained at x= 0.25 and 0.3. The lattice parameters, weight change, relative length change, and electrical resistivity of Sr1.7Ce0.3NiO y were measured from 20 to 1000°C. The oxygen content of this material, determined by hydrogen reduction and iodometric titration, was found to vary widely, depending on heat-treatment conditions. The room-temperature resistivity of Sr1.7Ce0.3NiO y is (2–5) × 10–2 cm. In the range 20–450°C, this material exhibits n-type conductivity. Its thermoelectric power varies from –12 V/K at 20°C to –34 V/K at 450°C. The temperature variation of resistivity for Sr1.7Ce0.3NiO4 in the first heating–cooling cycle below 450°C is shown to depend on the thermal history of the sample. The resistivity reaches a maximum between 500 and 800°C. The structural and transport properties of the mixed oxide are shown to be correlated with its oxygen content.  相似文献   

15.
The temperature dependence of surface tension and density for Fe–Cr–Mo (AISI 4142), Fe–Cr–Ni (AISI 304), and Fe–Cr–Mn–Ni TRIP/TWIP high-manganese (16 wt% Cr, 7 wt% Mn, and 3–9 wt% Ni) liquid alloys are investigated using the conventional maximum bubble pressure (MBP) and sessile drop (SD) methods. In addition, the surface tension of liquid steel is measured using the oscillating droplet method on electromagnetically levitated (EML) liquid droplets at the German Aerospace Centre (DLR, Cologne). The data of thermophysical properties for Fe–Cr–Mn–Ni is of major importance for modeling of infiltration and gas atomization processes in the prototyping of a “TRIP-Matrix-Composite.” The surface tension of TRIP/TWIP steel increased with an increase in temperature in MBP as well as in SD measurement. The manganese evaporation with the conventional measurement methods is not significantly high within the experiments (?Mn < 0.5 %). The temperature coefficient of surface tension (dσ/dT) is positive for liquid steel samples, which can be explained by the concentration of surface active elements. A slight influence of nickel on the surface tension of Fe–Cr–Mn–Ni steel was experimentally observed where σ is decreased with increasing nickel content. EML measurement of high-manganese steel, however, is limited to the undercooling state of the liquid steel. The manganese evaporation strongly increased in excess of the liquidus temperature in levitation measurements and a mass loss of droplet of 5 % was observed.  相似文献   

16.
The particle recently discovered by the CMS and ATLAS collaborations at CERN is almost certainly a Higgs boson, fulfilling a quest that can be traced back to three seminal high-energy papers of 1964, but which is intimately connected to ideas in other areas of physics that go back much further. One might oversimplify the history of the features which (i) give mass to the W and Z particles that mediate the weak nuclear interaction, (ii) effectively break gauge invariance, (iii) eliminate physically unacceptable Nambu–Goldstone bosons, and (iv) give mass to fermions (like the electron) by collectively calling them the London–Anderson–Englert–Brout–Higgs–Guralnik–Hagen–Kibble–Weinberg mechanism. More important are the implications for the future: a Higgs boson appears to point toward supersymmetry, since new physics is required to protect its mass from enormous quantum corrections, while the discovery of neutrino masses seems to point toward grand unification of the non-gravitational forces.  相似文献   

17.
The main results of the use of the GÉT 43–73 State Standard of the unit of pressure over the range of reproducible pressures of 100–1500 MPa, connected with ensuring correctness of high-pressure measurements in this country, by comparing the high-pressure scales of different countries, by improving the theoretical basis of the standard, its material part, and the experimental research techniques and checking work, are presented. Basic results, which, in the opinion of the authors, may be of interest to specialists, are given.Translated from Izmeritelnaya Tekhnika, No. 1, pp. 42–45, January, 2005.  相似文献   

18.
19.
Abstract

The casting properties of high strength Al-7Zn-7Mg-1Cu-3Ni-3Si(wt-%) alloy are described. Compared with common Al-Zn-Mg-Cu alloys, an improvement of casting properties has been achieved by adding elements (Ni, Mg, Si) that form eutectic phases, thus reducing the solidification interval of the alloy. A comparison of thermal cooling curves, castability and hot tearing tendency has been carried out for three alloys: Al-7Zn-2Mg-1Cu (structure consists mainly of solid solution), quasi-ternary eutectic alloy Al-7Zn-7Mg-1Cu-3Ni-3Si and the common casting alloy Al-10Si. In addition, the effect of melt protection against oxidation on castability has been evaluated. It is shown that the casting properties of the protected quasi-ternary eutectic alloy are significantly better than those of the common Al-7Zn-2Mg-1Cu alloy and that they achieve a level close to that of Al-10Si alloy.  相似文献   

20.
Abstract

The short transverse fracture toughness of an Al–Li–Cu–Mg–Zr extrudate was determined as a function of aging condition and testing temperature. To elucidate the underlying micromechanisms, the short transverse fracture surfaces of the extrudate were characterised via scanning electron microscopy, grain boundary precipitates and precipitation free zones were identified via transmission electron microscopy, and segregation of elements to grain boundaries was analysed using secondary ion mass spectrometry. Three principal observations were made as follows. First, with increasing aging time, the short transverse toughness of the extrudate increased when tested at room temperature, but decreased at liquid N2 temperature, whereas with decreasing testing temperature, it remained essentially constant for the underaged condition, and decreased sharply for the peak aged and overaged tempers. Second, in addition to regions exhibiting shallow dimples, smooth ‘featureless’ zones were revealed on the short transverse fracture surfaces, which are intergranular in nature for all the specimens tested. The area fraction of the featureless regions decreased noticeably with increasing aging time when tested at room temperature, and increased markedly with decreasing testing temperature for the peak aged and overaged conditions. Third, segregation of Li, Si, Na, and H was detected for both the underaged and overaged specimens, and also of K for the underaged specimens only. In general, the enhancement of the room temperature short transverse toughness with aging and the negative effect of cryogenic temperature on fracture toughness are in obvious contrast to the in plane toughness behaviour reported in the literature, the featureless character of the short transverse fracture and its connection with poor toughness seldom having been emphasised. Based upon the present study, segregation induced brittleness is proposed as the critical micromechanism responsible for grain boundary weakness, and thus for the poor short transverse fracture toughness.

MST/1829  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号