首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Periodic hybrid nanostructured materials based on aligned inorganic nanoparticles within self-assembled copolymer matrixes aimed to harness the collective properties of generated functional nanomaterials. The nanoparticles are desirable for their useful magnetic, optical, catalytic, and electronic properties owed to the quantum confinement effect. For instance, gold, palladium and platinum as nanoparticles, have shown significant change in the physiochemical properties in comparison to their bulk materials. If the nanoparticles are aligned into well-defined macroscopic periodic nanostructures in diverse of morphologies, the unique collective properties are significantly enhanced. These unique properties can be transformed to improve the performance of storage media, multi-contact tracks solar panels and optoelectronic devices. Within this review, the nanofabrication tools will be presented as an alternative route to conventional top-down methods for the fabrication of periodic nanostructured hybrid materials. A simple approach is reviewed to fabricate periodic nanostructured hybrid systems based on the directed assembly of inorganic nanoparticles into well-defined periodic three-dimensional nanostructures provided by the self-assembling ability of block copolymers. The fabrications of varieties morphologies and the formation mechanism at different dimensions will be discussed as well as the characterization techniques. Finally, several applications of the proposed hybrid nanostructures are highlighted for the next generation of miniaturized devices.  相似文献   

2.
3.
Over the past decade, the subject of “greener chemistry" and chemical processes has been emphasized. The “greener chemistry” improves environmental efficiency in reducing the consumption of resources and energy and achieving a stable economic development of the environment. Nanotechnology is investigating nanoscale materials that have applications in the area of biotechnology and nanomedicine alongside several other significant applications such as cosmetics, drug delivery, and biosensors. The different shapes and sizes of nanoparticles can be synthesized with physical, chemical, or biological methods. The tendency to produce nanomaterials, especially metal oxides, and use them, is increasing because of their exciting properties in the nanoscale. However, metal oxide nanoparticles produced by chemical methods have significant concerns due to hazardous and toxic chemicals and their environmental damage. The production of metal oxide nanoparticles using the principles of greener chemistry has found a special place in research. Increased awareness of greener chemistry and biological processes has necessitated using environmentally friendly methods for the production of non-toxic nanomaterials. Plants and polymeric materials as renewable and inexpensive sources have received particular attention to prepare nano biomaterials. The use of plants to synthesize metal oxide nanoparticles because of the non-use toxic pollutants is one of the environmentally friendly methods, and that's why this type of synthesis is called greener synthesis. In this review, we exhibit a total sight of greener synthesis methods for producing metal oxide nanoparticles and their medical applications.  相似文献   

4.
Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted.  相似文献   

5.
银纳米材料具有独特的物理性质,在光学、生物和催化等领域应用潜力巨大,是近年来材料领域的研究热点。银纳米材料的很多性能与其形貌密切相关,如枝状银纳米颗粒局部表面等离子体共振较强,不同形貌的银纳米颗粒裸露不同的晶面,导致其催化选择性不同。因此,控制合成特定形貌和结构的银纳米颗粒一直是该领域的重要研究方向。本工作综述了近年来银纳米颗粒形貌可控的合成方法,包括溶液还原法、晶种法、生物合成法、光诱导法、反应-扩散调控的动力学法和模板法等,比较了不同方法的优缺点,分析了不同合成方法的机理。重点介绍了基于反应和扩散调控的动力学方法,总结了其优点和普适性。调研了不同形貌银纳米颗粒在抑菌、局部等离子体共振和催化等领域的应用研究,分析了不同形貌银纳米颗粒的工业化应用前景,并对银纳米形貌的可控合成和应用进行了展望。  相似文献   

6.
Researchers have taken a prodigious consideration in characterizing and synthesizing zinc substituted cobalt ferrite nanoparticles because of their substantial applications across diverse technological and industrial fields. Zinc substituted cobalt ferrite nanoparticles are a class of lenient magnetic nanomaterials, which have potentially high magnetic, optical, electrical, and dielectric properties. These properties include a high value of permeability, low power losses, permittivity, saturation magnetization, coercivity, resistivity, and other beneficial properties that make them promise candidates for applications in various fields. These ferrites are also used in biomedical areas such as MRI and cancer treatments. In electronic fields, zinc substituted cobalt ferrite nanoparticles are used to make transducers, transformers, biosensors, and sensors. Apart from these advantages, they are found in our everyday electronic and electrical appliances like LED bulb, refrigerator, mobile charger, TV, microwave oven, juicer, washing machine, mixer, iron, printer, laptop, mobile, desktop, etc. Hence, the current review reports some properties of these spinel ferrites and emphasizes the different synthesis techniques that can be used to prepare them. Afterward, the impact of dopant on the materials' properties, the characterization techniques, and the momentous application in the present era have been well discussed.  相似文献   

7.
The major issue of consumable water shortage in different parts of the world has piqued the interest of researchers around the globe towards finding out novel, efficient and cost-effective means and techniques for treatment of contaminated water. Towards such efforts, researchers are experimenting with various types of nanoparticles for observing their abilities to treat polluted and/or wastewater. Numerous types of nanoparticles such as carbon-based nanoparticles, semiconductor nanoparticles, ceramic nanoparticles, polymeric nanoparticles, metal nanoparticles, magnetic nanoparticles, etc. are widely tested to confirm their applicability as potential candidates for contaminated as well as wastewater treatment. Different types of nanoparticles offer specific advantages depending on their composition, physical, chemical, electrical, magnetic and structural characteristics. Nanoparticles such as nanoferrites are reported to be easily separated, regenerated and reused up to several runs without incurring any loss in their properties which tend to significantly reduce operations costs. The present study provides a detailed review of the various synthesis and characterization techniques for the production of the nanoparticles. The present study also reviews the current progress, made particularly during the last two decades, in the application of nanoparticles for successful removal of organic, metallic as well as pathogenic pollutants from the water. This review aims to highlight the unlimited potential of nanoparticles and their derivatives in the domain of contaminated and wastewater treatment.  相似文献   

8.
The development of nonaqueous and surfactant-free sol-gel routes to metal oxides has become a very active area within the broad field of nanoparticle research, opening up great opportunities to access a wide variety of binary, ternary and doped metal oxide nanoparticles with high crystallinity and well-defined particle morphologies — important parameters towards their application in electrochemistry, (photo)catalysis or gas sensing. Extension to other classes of inorganic nanomaterials such as nitrides and sulfides and energy optimization of the processes by using dielectric heating represents two promising research directions. Remaining future challenges are not only the development of rational synthesis strategies, nanoparticle processing, assembly and patterning into functional and integrated structures, but also the optimization of the synthesis protocol with respect to energy efficiency and waste management. This review aims at giving both an overview of the current state of research as well as a discussion of the perspectives in the area of nonaqueous and/or non-hydrolytic sol-gel technology for the synthesis, processing and application of inorganic nanomaterials.  相似文献   

9.
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application. In this review, we give a comprehensive introduction to the recent advancements of melanin-like nanoparticles in the field of photothermal therapy in the past decade. In this review, the synthesis pathway, internal mechanism and basic physical and chemical properties of melanin-like nanomaterials are systematically classified and evaluated. It also summarizes the application of melanin-like nanoparticles in bioimaging and tumor photothermal therapy (PTT)in detail and discussed the challenges they faced in clinical translation rationally. Overall, melanin-like nanoparticles still have significant room for development in the field of biomedicine and are expected to applied in clinical PTT in the future.  相似文献   

10.
Antimicrobial properties of ZnO nanomaterials: A review   总被引:1,自引:0,他引:1  
《Ceramics International》2017,43(5):3940-3961
Waterborne diseases significantly affect the human health and are responsible for high mortality rates worldwide. Traditional methods of the treatment are now insignificant as maximum bacterial strains have developed multiple antibiotic resistance toward commonly used antibiotic drugs. Recently, ZnO nanostructures, due to their biocompatible nature, have attracted the attention of the scientific community to explore and to understand their cytotoxicity, interactions with biomolecules such as proteins, nucleic acids, fats, cell membranes, tissues, biological fluids, etc., and bio-safety for proper utilization in biomedical applications. Herein, we have reviewed the recent developments for the fabrication of ZnO nanomaterials with variable morphologies, factors influencing the growth, morphology and surface defects, and various laboratory methods to evaluate the antibacterial activities toward Gram-positive as well as Gram-negative bacterial strains. A comparative study is carried out to evaluate the mechanistic approach of ZnO nanomaterials toward Gram-positive as well as Gram-negative bacterial cells. ZnO nanomaterials can interact chemically as well as physically to exhibit antibacterial activities. Chemical interactions of the ZnO nanomaterials with bacterial cells lead to the photo-induced production of reactive oxygenated species (ROS), formation of H2O2, and release of Zn2+ ions. In contrast, the physical interaction can show biocidal effects through cell envelope rupturing, cellular internalization or mechanical damage. Finally, surface activation through amine functionalization of ZnO nanoparticles for better antibacterial effects and cytotoxicity of ZnO nanoparticles toward cancer cells is also reviewed.  相似文献   

11.
Due to various structural and optical properties, metal chalcogenide nanomaterials are favorable candidates for different optoelectronic applications. In the current report, Cu2Te/NiTe nanocomposites were synthesized via the facile hydrothermal method. With the variation of concentration of Cu and Ni, various materials had been prepared along with pure Cu2Te and NiTe. The observed several vibrational modes in the material through the Raman spectroscopy are well agreed with the appearing phases. The morphological study confirmed the nanostructures are combination of nanoparticles with sheets. The size of nanoparticles varied in the range of 66–34 nm. The absorbance spectra of the nanocomposite exhibit a blueshift and support the enhancement in the optical bandgap. The value of bandgap energy of the composite samples has been noted in the range of 1.8–2.2 eV. This bandgap range enables the material for various optoelectronic applications such as solar cell and other photovoltaic devices. Thermal analysis of the material demonstrates the presences of several endothermic and exothermic peaks. Thus, several studies on the material prevail its various applicability as optoelectronics as well as other thermal application.  相似文献   

12.
基于超分子有机凝胶的纳米复合材料是集有机和纳米材料优异性能于一体的新型智能材料, 已成为近年来功能复合材料的研究热点之一。本文综述了该类复合材料的研究现状, 包括超分子有机凝胶分别与无机纳米粒子、金属纳米粒子以及碳纳米管等材料的复合, 分别从其模板效应、制备方法等方面进行介绍。纳米复合材料丰富的结构受控于超分子丰富的簇集体形貌, 这种模板效应主要依赖于超分子有机凝胶特有的三维网络结构, 其为纳米粒子成核、生长、排列等提供了优良的载体环境, 可以有效避免纳米粒子的团聚, 从而提高纳米粒子的稳定性, 并展望了该类材料在催化、传感、生物以及医学等领域的发展前景。  相似文献   

13.
In order to develop new, high technology devices for a variety of applications, researchers would like to better control the structure and function of micro/nanomaterials through an understanding of the role of size, shape, architecture, composition, hybridization, molecular engineering, assembly, and microstructure. However, researchers continue to face great challenges in the construction of well-defined micro/nanomaterials with diverse morphologies. At the same time, the research interface where micro/nanomaterials meet electrochemistry, analytical chemistry, biomedicine, and other fields provides rich opportunities to reveal new chemical, physical, and biological properties of micro/nanomaterials and to uncover many new functions and applications of these materials. In this Account, we describe our recent progress in the construction of novel inorganic and polymer nanostructures formed through different simple strategies. Our synthetic strategies include wet-chemical and electrochemical methods for the controlled production of inorganic and polymer nanomaterials with well-defined morphologies. These methods are both facile and reliable, allowing us to produce high-quality micro/nanostructures, such as nanoplates, micro/nanoflowers, monodisperse micro/nanoparticles, nanowires, nanobelts, and polyhedron and even diverse hybrid structures. We implemented a series of approaches to address the challenges in the preparation of new functional micro/nanomaterials for a variety of important applications This Account also highlights new or enhanced applications of certain micro/nanomaterials in sensing applications. We singled out analytical techniques that take advantage of particular properties of micro/nanomaterials. Then by rationally tailoring experimental parameters, we readily and selectively obtained different types of micro/nanomaterials with novel morphologies with high performance in applications such as electrochemical sensors, electrochemiluminescent sensors, gene delivery agents, and fuel cell catalysts. We expect that micro/nanomaterials with unique structural characteristics, properties, and functions will attract increasing research interest and will lead to new opportunities in various fields of research.  相似文献   

14.
特殊形貌的纳米级磷酸铁锂正极材料在锂离子电池的改进研究中具有重要作用,其合成研究受到了越来越广泛的关注。笔者介绍了几种不同形貌的纳米级磷酸铁锂正极材料的主要合成方法及其特点,并着重介绍近几年来国内外在此方面的重要研究成果及进展。  相似文献   

15.
Polymeric nanostructured materials (PNMs), which are polymeric materials in nanoscale or polymer composites containing nanomaterials, have become increasingly useful for biomedical applications. In specific, advances in polymer-related nanoscience and nanotechnology have brought a revolutionary change to produce new biomaterials with tailored properties and functionalities for targeted biomedical applications. These materials, including micelles, polymersomes, nanoparticles, nanocapsules, nanogels, nanofibers, dendrimers and nanocomposites, have been widely used in drug delivery, gene therapy, bioimage, tissue engineering and regenerative medicine. This review presents a comprehensive overview on the various types of PNMs, their fabrication methods and biomedical applications, as well as the challenges in research and development of future PNMs.  相似文献   

16.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   

17.
Nonaqueous sol-gel routes to metal oxide nanoparticles   总被引:1,自引:0,他引:1  
Sol-gel routes to metal oxide nanoparticles in organic solvents under exclusion of water have become a versatile alternative to aqueous methods. In comparison to the complex aqueous chemistry, nonaqueous processes offer the possibility of better understanding and controlling the reaction pathways on a molecular level, enabling the synthesis of nanomaterials with high crystallinity and well-defined and uniform particle morphologies. The organic components strongly influence the composition, size, shape, and surface properties of the inorganic product, underlining the demand to understand the role of the organic species at all stages of these processes for the development of a rational synthesis strategy for inorganic nanomaterials.  相似文献   

18.
Rapid technological advancements in flexible nanoelectronics have fueled the need for high-performance materials with advanced structural architectures and superior properties. In this regard, conducting polymer nanocomposites are at the forefront of current innovative research owing to their excellent properties. Among these sets of unique materials, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS) nanocomposites continue to pave the way in several applications including those entailing thermoelectricity, transparent electrodes, photovoltaics, technical coatings, lighting, sensing, bioelectronics, hole transport layers, interconnectors, electroactive layers, and motion-sensing conductors. The versatility and intriguing properties of these composites, particularly with 2D nanomaterials, have garnered significant attention from academia as well as industry. Therefore, in this review, the latest developments in PEDOT:PSS nanocomposites with graphene and its derivatives are focused on. First, the synthesis and fabrication of PEDOT:PSS nanocomposites with emphasis on recent techniques developed to overcome the challenges associated with direct production is discussed. Thereafter, the characterization and thermoelectric properties of the materials are explained. This provides detailed insights into the characteristic features of various nanocomposites and the influence of individual nanoparticles in the PEDOT:PSS matrix. Then, a conclusion, including a critical summary of the extensive applications of the PEDOT:PSS/graphene nanocomposites for electrochemical, electrostatic, optoelectronic, and thermoelectric devices, is provided.  相似文献   

19.
Membrane distillation (MD) is a thermally driven process that uses low-grade energy to operate and has been extensively explored as an alternative cost-effective and efficient water treatment process compared to conventional membrane processes. MD membranes are synthesized from hydrophobic polymers, e.g. polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) or polypropylene (PP), using various methods including phase inversion and electrospinning techniques. Recent literature on MD membranes clearly shows their important role in surface water/wastewater treatment and seawater desalination. Modification of MD membranes with nanoscale materials significantly improves their performance, preventing wetting and fouling. This review presents a critical assessment of the progress on the use of nanomaterials for the modification of MD membranes. The techniques commonly used to synthesize MD membranes, the modifications that have been adopted for the incorporation of nanomaterials onto membranes, and the unique properties these nanomaterials impart on the membranes are discussed. The use of modified membranes in different MD configurations and their application in groundwater, surface water, wastewater, brackish water and seawater treatment is reviewed. Finally, cost implications, commercial viability, environmental sustainability, and future prospects of MD are also discussed to elucidate promising approaches for a future and successful implementation of MD at an industrial scale. © 2019 Society of Chemical Industry  相似文献   

20.
The emergence and development of nanomedicine have alleviated problems existing in traditional chemotherapy drugs, such as short lifetime, concomitant side effects, and weak tumor-targeting capability. Nevertheless, the further applications of drug-loaded nanocarriers are still limited by their premature leakage, weak targeting capability, and insufficient intracellular release. In past decades, various nanocarriers, including gold nanoparticles, porous silica nanoparticles, carbon-based nanoparticles, micelles, liposomes, and polymer–drug conjugates, have been intensively investigated for tumor therapy. Among these, polymer-based nanocarriers have attracted more attention due to their biocompatibilities and capability of being modified for stimuli-responsive drug release. In this review, three popular strategies to design and synthesize polymer-based stimuli-responsive nanocarriers are discussed. The discussion goes from stimuli-responsive polymers with responsive backbones or modified by responsive functional groups for drug encapsulation and release to polymer–drug conjugates with responsive covalent linkages. In particular, due to the facile synthetic processes and mild reaction conditions for crosslinked structures, the latest progress in responsive crosslinked structures is emphasized. Finally, future perspectives for these nanomaterials are given, which are expected to provide inspiration for researchers to design more effective and safer tumor-killing nanomedicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号