首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously showed that substitution of a glycine residue for the palmitoylated cysteine 341 of the human beta2-adrenergic receptor (Gly341beta2AR), increases the basal level of the receptor phosphorylation and reduces its ability to functionally interact with Gs. In the present study, we show that additional mutation of serines 345 and 346 (Ala345,346Gly341beta2AR) restored normal phosphorylation and receptor-Gs coupling, thus suggesting that the increased phosphorylation of this site, rather than the lack of palmitoylation per se, is responsible for the poor coupling of the unpalmitoylated receptor. This is supported by the observation that chemical depalmitoylation of purified beta2AR did not affect the ability of the receptor to stimulate adenylyl cyclase in reconstitution assays. Furthermore, mutation of Ser345,346 in a wild type receptor background (Ala345,346beta2AR) significantly decreased the rate of agonist-promoted desensitization of the receptor-stimulated adenylyl cyclase activity, supporting a role for this phosphorylation site in regulating the functional coupling of the receptor. Since serines 345 and 346 are located in a putative cyclic AMP-dependent protein kinase (PKA) phosphorylation site immediately downstream of the palmitoylated cysteine 341, the hypothesis that the accessibility of this site may be regulated by the receptor palmitoylation state was further assessed in vitro. In membrane phosphorylation assays, Gly341beta2AR was found to be a better substrate for PKA than the wild type receptor, thus supporting the notion that palmitoylation restrains access of the phosphorylation site to the enzyme. Taken together, the data demonstrate that palmitoylation of cysteine 341 controls the phosphorylation state of the PKA site located in the carboxyl tail of the beta2AR and by doing so modulates the responsiveness of the receptor.  相似文献   

2.
The alpha2-adrenergic receptor (alpha2AR) subtype alpha2C10 undergoes rapid agonist-promoted desensitization which is due to phosphorylation of the receptor. One kinase that has been shown to phosphorylate alpha2C10 in an agonist-dependent manner is the betaAR kinase (betaARK), a member of the family of G protein-coupled receptor kinases (GRKs). In contrast, the alpha2C4 subtype has not been observed to undergo agonist-promoted desensitization or phosphorylation by betaARK. However, the substrate specificities of the GRKs for phosphorylating alpha2AR subtypes are not known. We considered that differential capacities of various GRKs to phosphorylate alpha2C10 and alpha2C4 might be a key factor in dictating in a given cell the presence or extent of agonist-promoted desensitization of these receptors. COS-7 cells were co-transfected with alpha2C10 or alpha2C4 without or with the following GRKs: betaARK, betaARK2, GRK5, or GRK6. Intact cell phosphorylation studies were carried out by labeling cells with 32Pi, exposing some to agonist, and purifying the alpha2AR by immunoprecipitation and SDS-polyacrylamide gel electrophoresis. BetaARK and betaARK2 were both found to phosphorylate alpha2C10 to equal extents (>2-fold over that of the endogenous kinases). On the other hand, GRK5 and GRK6 did not phosphorylate alpha2C10. In contrast to the findings with alpha2C10, alpha2C4 was not phosphorylated by any of these kinases. Functional studies carried out in transfected HEK293 cells expressing alpha2C10 or alpha2C4 and selected GRKs were consistent with these phosphorylation results. With the marked expression of these receptors, no agonist-promoted desensitization was observed in the absence of GRK co-expression. However, desensitization was imparted to alpha2C10 by co-expression of betaARK but not GRK6, while alpha2C4 failed to desensitize with co-expression of betaARK. These results indicate that short term agonist-promoted desensitization of alpha2ARs by phosphorylation is dependent on both the receptor subtype and the expressed GRK isoform.  相似文献   

3.
The biogenesis of trimeric G proteins was investigated by measurement of the expression of alpha-subunits in the megakaryoblastic cell lines MEG-01, DAMI, and CHRF-288-11, representing stages of increasing maturation, and compared with platelets. Megakaryoblasts and platelets contained approximately equal amounts of Gi alpha-1/2, Gi alpha-3, Gq alpha, and G12 alpha protein. Maturation was accompanied by (1) downregulation of mRNA for Gs alpha and disappearance of iloprost-induced Ca2+ mobilization, (2) upregulation of the long form of Gs alpha protein (Gs alpha-L) and an increase in iloprost-induced cAMP formation, and (3) upregulation of G16 alpha mRNA and G16 alpha protein and appearance of thromboxane A2-induced signaling (Ca2+ mobilization and stimulation of prostaglandin I2-induced cAMP formation). Gz alpha protein was absent in the megakaryoblasts despite weak expression of Gz alpha mRNA in DAMI and relatively high levels of Gz alpha mRNA and Gz alpha protein in platelets. These findings reveal major changes in G protein-mediated signal transduction during megakaryocytopoiesis and indicate that G16 alpha couples the thromboxane receptor to phospholipase C beta.  相似文献   

4.
Suicide and depression are associated with an increased density of alpha2-adrenoceptors (radioligand receptor binding) in specific regions of the human brain. The function of these inhibitory receptors involves various regulatory proteins (Gi coupling proteins and G protein-coupled receptor kinases, GRKs), which work in concert with the receptors. In this study we quantitated in parallel the levels of immunolabeled alpha2A-adrenoceptors and associated regulatory proteins in brains of suicide and depressed suicide victims. Specimens of the prefrontal cortex (Brodmann area 9) were collected from 51 suicide victims and 31 control subjects. Levels of alpha2A-adrenoceptors, Galphai1/2 proteins, and GRK 2/3 were assessed by immunoblotting techniques by using specific polyclonal antisera and the immunoreactive proteins were quantitated by densitometry. Increased levels of alpha2A-adrenoceptors (31-40%), Galphai1/2 proteins (42-63%), and membrane-associated GRK 2/3 (24-32%) were found in the prefrontal cortex of suicide victims and antidepressant-free depressed suicide victims. There were significant correlations between the levels of GRK 2/3 (dependent variable) and those of alpha2A-adrenoceptors and Galphai1/2 proteins (independent variables) in the same brain samples of suicide victims (r = 0.56, p = 0.008) and depressed suicide victims (r = 0.54, p = 0.041). Antemortem antidepressant treatment was associated with a significant reduction in the levels of Galphai1/2 proteins (32%), but with modest decreases in the levels of alpha2A-adrenoceptors (6%) and GRK 2/3 (18%) in brains of depressed suicide victims. The increased levels in concert of alpha2A-adrenoceptors, Galphai1/2 proteins, and GRK 2/3 in brains of depressed suicide victims support the existence of supersensitive alpha2A-adrenoceptors in subjects with major depression.  相似文献   

5.
Long-term stimulation of the beta 2-adrenergic receptor (beta 2AR) leads to an internalization and degradation of the receptor. This down-regulation of the beta 2AR number contributes to the desensitization of the adenylyl cyclase activity induced by chronic exposure to agonists. It was proposed that two tyrosine residues (Tyr-350 and Tyr-354) located in the cytoplasmic tail of the beta 2AR play a crucial role in agonist-induced down-regulation. In addition to perturbation of the down-regulation, the substitution of these tyrosines for alanines also led to a functional uncoupling of the receptor from Gs [Valiquette et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5089-5093]. To further characterize the relative contribution of Tyr-350 and Tyr-354 to the receptor interaction with Gs and agonist-promoted down-regulation, both tyrosines were individually replaced by alanines and mutant receptors expressed in CHW cells. We show here that mutation of Tyr-350 but not that of Tyr-354 significantly decreased the ability of the beta 2AR to be functionally coupled to Gs and thereby to stimulate the adenylyl cyclase. Moreover, in contrast to the double tyrosine mutation, neither of the single-point mutations affected the agonist-induced down-regulation pattern. These data suggest that the presence of either Tyr-350 or Tyr-354 is sufficient to maintain normal agonist-induced down-regulation whereas the integrity of Tyr-350 is required for an appropriate coupling to Gs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Pertussis toxin inhibits chemotaxis of neutrophils by preventing chemoattractant receptors from activating trimeric G proteins in the Gi subfamily. In HEK293 cells expressing recombinant receptors, directional migration toward appropriate agonist ligands requires release of free G protein betagamma subunits and can be triggered by agonists for receptors coupled to Gi but not by agonists for receptors coupled to two other G proteins, Gs and Gq. Because activation of any G protein presumably releases free Gbetagamma, we tested the hypothesis that chemotaxis also requires activated alpha subunits (Galphai) of Gi proteins. HEK293 cells were stably cotransfected with the Gi-coupled receptor for interleukin-8, CXCR1, and with a chimeric Galpha, Galphaqz5, which resembles Galphai in susceptibility to activation by Gi-coupled receptors but cannot regulate the Galphai effector, adenylyl cyclase. These cells, unlike cells expressing CXCR1 alone, migrated toward interleukin-8 even after treatment with pertussis toxin, which prevents activation of endogenous Galphai but not that of Galphaqz5. We infer that chemotaxis does not require activation of Galphai. Because chemotaxis is mediated by Gbetagamma subunits released when Gi-coupled receptors activate Galphaqz5, but not when Gq- or Gs-coupled receptors activate their respective G proteins, we propose that Gi-coupled receptors transmit a necessary chemotactic signal that is independent of Galphai.  相似文献   

7.
Rapid regulation of G protein-coupled receptors appears to involve agonist-promoted receptor phosphorylation by G protein-coupled receptor kinases (GRKs). This is followed by binding of uncoupling proteins termed arrestins and transient receptor internalization. In this report we show that the beta-adrenergic receptor kinase (betaARK-1 or GRK2) follows a similar pattern of internalization upon agonist activation of beta2-adrenergic receptors (beta2AR) and that betaARK expression levels modulate receptor sequestration. Stable cotransfected cells expressing an epitope-tagged beta2AR and betaARK-1 show an increased rate and extent of beta2AR internalization compared with cells expressing receptor alone. Moreover, subcellular gradient fractionation studies suggest that betaARK colocalizes with the internalized receptors. In fact, double immunofluorescence analysis using confocal microscopy shows extensive colocalization of beta2AR and betaARK in intracellular vesicles upon receptor stimulation. Our results confirm a functional relationship between receptor phosphorylation and sequestration and indicate that betaARK does not only translocates from the cytoplasm to the plasma membrane in response to receptor occupancy, but shares endocytic mechanisms with the beta2AR. These data suggest a direct role for betaARK in the sequestration process and/or the involvement of receptor internalization in the intracellular trafficking of the kinase.  相似文献   

8.
Previously, we have shown that alpha-2C and alpha-1A adrenergic receptors (AR) stimulate prostacyclin (PGI2) synthesis through a pertussis toxin-sensitive guanine nucleotide-binding protein (G protein) in vascular smooth muscle cells (VSMC). The purpose of this study was to assess the role of Ca++ in PGI2 production elicited by alpha-AR activation and to investigate the modulation of the Ca++ channel by G proteins coupled to these alpha-AR in VSMC. PGI2 was measured as immunoreactive 6-keto-PGF1 alpha by radioimmunoassay and cytosolic calcium ([Ca++]i) by spectrofluorometry using fura-2. Norepinephrine, methoxamine and UK-14304 enhanced 6-keto-PGF1 alpha production and [Ca++]i, which was inhibited by depletion of extracellular Ca++ and by Ca++ channel antagonists (verapamil, nifedipine and PN 200-110). Moreover, the Ca++ channel activator Bay K 8644 increased 6-keto-PGF1 alpha production in a nifedipine-sensitive manner, indicating the involvement of dihydropyridine-sensitive Ca++ channels in VSMC. Pertussis toxin inhibited AR agonist-induced 6-keto-PGF1 alpha production and the increase in [Ca++]i. Alpha AR agonists increase Ca++ influx in the presence of guanosine 5'-0-(2- thiodiphosphate) (GTP-gamma-S), and this effect was blocked in the presence of guanine 5'-O-(2-thiodiphosphate) (GDP-beta-S) and antiserum against Gi alpha 1-2 protein in reversibly permeabilized cells with beta-escin. VSMC of rabbit aortae contain a G protein(s) that was recognized by Gi alpha 1-2 but not Gi alpha 3 or G0 antibodies at 1:200 dilution. The calmodulin inhibitor W-7 blocked AR agonist and Bay K 8644-stimulated 6-keto-PGF1 alpha production. The phospholipase A2 inhibitors 7,7-dimethyleicosadienoic acid and oleoyloxyethyl phosphocholine but not phospholipase C inhibitor U-73122 reduced 6-keto-PGF1 alpha production in VSMC. These data suggest that a pertussis toxin-sensitive G protein, probably Gi alpha 1-2, coupled to alpha AR regulates Ca++ influx, which, in turn, by interacting with calmodulin, increases phospholipase A2 activity to release arachidonic acid for PGI2 synthesis in VSMC of rabbit aortae.  相似文献   

9.
The purified bovine brain A1-adenosine receptor has previously been shown to discriminate among closely related G protein alpha-subunits. To obtain analogous information for the human receptor, the cDNA coding for the human A1-adenosine receptor was inserted into a plasmid placing the synthesis of the receptor protein under the control of the MalE promoter. Following induction by maltose, active receptor accumulated in Escherichia coli membranes. Binding of the antagonist 8-[3H]cyclopentyl-1,3-dipropylxanthine to E. coli membranes (KD approximately 2 nM, Bmax approximately 0.2-0.4 pmol/mg) showed the appropriate pharmacological profile. Incubation of E. coli membranes with purified Go,i-reconstituted guanine nucleotide-sensitive high affinity binding of the agonist (-)[125I] N6-3-(iodo-4-hydroxyphenylisopropyl)adenosine to the receptor (KD approximately 1 nM). In the presence of purified beta gamma-subunit, the recombinant receptor interacted equally well with the recombinant G protein alpha-subunits Gi alpha-1, Gi alpha-2, Gi alpha-3; G(o) alpha displayed a lower affinity for the receptor while Gs alpha was inactive. Parallel experiments were carried out in bovine and human brain membranes pretreated with N-ethylmaleimide to inactivate the endogenous G(o)/Gi proteins; Gi alpha-3 was most potent in reconstituting 125I-HPIA binding to bovine membranes, while Gi alpha-1, Gi alpha-2, and G(o) alpha displayed similar affinities. However, in human membranes, Gi alpha-1, Gi alpha-2, and Gi alpha-3, were equipotent and high concentrations of G(o) alpha were required to promote 125I-HPIA binding. These observations show (i) that functional human A1-adenosine receptors were synthesized in E. coli; (ii) that the pattern of G protein coupling is identical for the recombinant human A1-receptor and its counterpart in the native membrane; (iii) and that species differences between bovine and human receptor exist not only in their pharmacological profile but also in their G protein specificity suggesting that species homologues of receptors may use different signaling mechanisms.  相似文献   

10.
Truncations and chimeras of the alpha2A-adrenergic receptor (alpha2AAR) were evaluated to identify membrane domains responsible for its direct basolateral targeting in Madin-Darby canine kidney cells. An alpha2AAR truncation, encoding transmembrane (TM) regions 1-5, was first delivered basolaterally, but within minutes appeared apically, and at steady-state was primarily lateral in its immunocytochemical localization. A TM 1-5 truncation with the third intracellular loop revealed more intense lateral localization than for the TM 1-5 structure, consistent with the role of the third intracellular loop in alpha2AAR stabilization. Addition of TM 6-7 of A1 adenosine receptor (A1AdoR) to alpha2AARTM1-5 creates a chimera, alpha2AARTM1-5/A1AdoRTM6-7, which was first delivered apically, resulting either from loss of alpha2AAR sorting information in TM 6-7 or acquisition of apical trafficking signals within A1AdoRTM6-7. Evidence that alpha2AARTM6-7 imparts basolateral targeting information is revealed by the significant basolateral localization of the A1AdoRTM1-5/alpha2AARTM6-7 and A1AdoRTM1-5/alpha2AARTM6-7+i3 chimeras, in contrast to the dominant apical localization of A1AdoR. These results reveal that sequences within TM 1-5 and within TM 6-7 of the alpha2AAR confer basolateral targeting, providing the first evidence that alpha2AAR basolateral localization is not conferred by a single region but by non-contiguous membrane-embedded or proximal sequences.  相似文献   

11.
The molecular mechanisms governing the coupling selectivity of G protein-coupled receptors activated by peptide ligands are not well understood. To shed light on this issue, we have used the Gq/11-linked V1a and the Gs-coupled V2 vasopressin peptide receptors as model systems. To explore the structural basis underlying the ability of the V2 receptor to selectively recognize Gs, we systematically substituted distinct V2 receptor segments (or single amino acids) into the V1a receptor and studied whether the resulting hybrid receptors gained the ability to mediate hormone-dependent cAMP production. This strategy appeared particularly attractive since hormone stimulation of the V1a receptor has virtually no effect on intracellular cAMP levels. Functional analysis of a large number of mutant receptors transiently expressed in COS-7 cells indicated that the presence of V2 receptor sequence at the N terminus of the third intracellular loop is critical for efficient activation of Gs. More detailed mutational analysis of this receptor region showed that two polar V2 receptor residues, Gln225 and Glu231, play key roles in Gs recognition. In addition, a short sequence at the N terminus of the cytoplasmic tail was found to make an important contribution to V2 receptor/Gs coupling selectivity. We also made the novel observation that the efficiency of V2 receptor/Gs coupling can be modulated by the length of the central portion of the third intracellular loop (rather than the specific amino acid sequence within this domain). These findings provide novel insights into the molecular mechanisms regulating peptide receptor/G protein coupling selectivity.  相似文献   

12.
The murine G-protein alpha-subunit G alpha 15 and its human counterpart G alpha 16 are expressed in a subset of hematopoietic cells, and they have been shown to regulate beta-isoforms of inositide-specific phospholipase C. We studied the ability of a variety of receptors to interact with G alpha 15 and G alpha 16 by cotransfecting receptors and G-protein alpha-subunits in COS-7 cells. Activation of beta 2 adrenergic and muscarinic M2 receptors in cells expressing the receptors alone or together with G alpha q, G alpha 11, or G alpha 14 led to a very small stimulation of endogenous phospholipase C. However, when the receptors were coexpressed with G alpha 15 and G alpha 16, addition of appropriate ligands caused a severalfold increase in inositol phosphate production which was time- and dose-dependent. A similar activation of phospholipase C was observed when several other receptors which were previously shown to couple to members of the Gi and Gs family were coexpressed with G alpha 15/16. In addition, stimulation of inositol phosphate formation via receptors naturally coupled to phospholipase C was enhanced by cotransfection of G alpha 15 and G alpha 16. These data demonstrate that G alpha 15 and G alpha 16 are unique in that they can be activated by a wide variety of G-protein-coupled receptors. The ability of G alpha 15 and G alpha 16 to bypass the selectivity of receptor G-protein interaction can be a useful tool to understand the mechanism of receptor-induced G-protein activation. In addition, the promiscuous behavior of G alpha 15 and G alpha 16 toward receptors may be helpful in finding ligands corresponding to orphan receptors whose signaling properties are unknown.  相似文献   

13.
The alpha subunit of Gi2 (Gi2 alpha) is a member of the heterotrimeric G protein family, which transduces receptor signals as a proto-oncogene product. We have found a novel self-suppressive region in Gi2 alpha near its C terminus. A polypeptide consisting of residues 338-352 of Gi2 alpha (Gi2 alpha-339-352) antagonizes receptor- and receptor peptide-stimulated Gi2 alpha activation, without affecting basal activity. Antagonism by Gi2 alpha-338-352 is attributable to an interaction with activated Gi2 alpha, which is not competitive with receptor polypeptides. Combined with the reports suggesting the presence of self-suppressive domains in a juxta-C-terminal portion of Gi2 alpha and G(o) alpha, this study supports the hypothesis that Gi2 alpha-338-352 constitutes an intrinsic guanine nucleotide exchange inhibitor, which in turn antagonizes receptor stimulation, suggesting that G proteins are activated by receptors through relaxation of a self-suppressive conformation.  相似文献   

14.
The differing effects of short-term agonist exposure on the two inhibitory adenosine receptor (AR) subtypes have been examined using Chinese hamster ovary cells stably expressing the hemagglutinin epitope-tagged human A1AR and rat A3AR. Under conditions in which exposure of transfected cells to 5 microM (-)-(R)-N6-(phenylisopropyl)adenosine resulted in the functional desensitization and phosphorylation of the A3AR, neither property was exhibited by the A1AR. However, a stably expressed chimeric A1-A3AR, termed A1CT3AR, in which the C-terminal domain of the A1AR distal to its predicted palmitoylation site was replaced by the corresponding region of the A3AR, was able to undergo functional desensitization and agonist-stimulated phosphorylation in a manner similar to that exhibited by the A3AR. Moreover, purified G-protein-coupled receptor kinases 2, 3, and 5 were each capable of enhancing the agonist-dependent phosphorylation of the A3AR and A1CT3AR in vitro. Taken together, these data demonstrate that the C-terminal domain of the A3AR distal to its predicted palmitoylation site is responsible for this receptor's ability to undergo a rapid agonist-dependent desensitization and are consistent with a model in which phosphorylation of the A3AR within this domain by one or more G-protein-coupled receptor kinases initiates the desensitization process.  相似文献   

15.
The diverse physiological functions exerted by the neuropeptide galanin may be regulated by multiple G protein-coupled receptor subtypes and intracellular signaling pathways. Three galanin receptor subtypes (GalRs) have been recently cloned, but the G protein coupling profiles of these receptors are not completely understood. We have generated GalR1- and GalR2-expressing Chinese hamster ovary (CHO) cell lines and systematically examined the potential for these two receptors to couple to the Gs, Gi, Go, and Gq proteins. Galanin did not stimulate an increase in cAMP levels in GalR1/CHO or GalR2/CHO cells, suggesting an inability of either receptor to couple to Gs. Galanin inhibited forskolin-stimulated cAMP production in GalR1/CHO cells by 70% and in GalR2/CHO cells by 30%, suggesting a strong coupling of GalR1 to Gi and a more modest coupling between GalR2 and Gi. GalR1 and GalR2 both mediated pertussis toxin-sensitive MAPK activity (2-3-fold). The stimulation mediated by GalR1 was inhibited by expression of the C-terminus of beta-adrenergic receptor kinase (beta ARKct), which specifically inhibits G beta gamma signaling, but was not affected by the protein kinase C (PKC) inhibitor, bis[indolylmaleimide], or cellular depletion of PKC. In contrast, GalR2-mediated MAPK activation was not affected by beta ARKct expression but was abolished by inhibition of PKC activity. The data demonstrate that GalR1 is coupled to a Gibetagamma signaling pathway to mediate MAPK activation. In contrast, GalR2 utilizes a distinct signaling pathway to mediate MAPK activation, which is consistent with Go-mediated MAPK activation in CHO cells. Galanin was unable to stimulate inositol phosphate (IP) accumulation in CHO or COS-7 cells expressing GalR1. In contrast, galanin stimulated a 7-fold increase in IP production in CHO or COS-7 cells expressing GalR2. The GalR2-mediated IP production was not affected by pertussis toxin, suggesting a linkage of GalR2 with Gq/G11. Thus, the GalR1 receptor appears to activate only the Gi pathway. By contrast, GalR2 is capable of stimulating signaling which is consistent with activation of Go, Gq/G11, and Gi. The differential signaling profiles and the tissue distribution patterns of GalR1 and GalR2 may underlie the functional spectra of galanin action mediated by these galanin receptors and regulate the diverse physiological functions of galanin.  相似文献   

16.
In preadipocytes, alpha2-adrenergic receptor (alpha2-AR) stimulation leads to a Gi/Go-dependent rearrangement of actin cytoskeleton. This is characterized by a rapid cell spreading, the formation of actin stress fibers, and the increase in tyrosyl phosphorylation of the focal adhesion kinase (pp125(FAK)). These cellular events being tightly controlled by the small GTPase p21(rhoA), the existence of a Gi/Go-dependent coupling of alpha2-AR to p21(rhoA) in preadipocytes was proposed. In alpha2AF2 preadipocytes (a cell clone derived from the 3T3F442A preadipose cell line and which stably expresses the human alpha2C10-adrenergic receptor) alpha2-adrenergic-dependent induction of cell spreading, formation of actin stress fibers, and increase in tyrosyl phosphorylation of pp125(FAK) were abolished by pretreatment of the preadipocytes with the C3 exoenzyme, a toxin which impairs p21(rhoA) activity by ADP-ribosylation. Conversely, C3 exoenzyme had no effect on the alpha2-adrenergic-dependent increase in tyrosyl phosphorylation and shift of ERK2 mitogen-activated protein kinase. alpha2-Adrenergic stimulation also led to an increase in GDP/GTP exchange on p21(rhoA), as well as to an increase in the amount of p21(rhoA) in the particulate fraction of alpha2AF2 preadipocytes. Stable transfection of alpha2AF2 preadipocytes with the COOH-terminal domain of betaARK1 (betaARK-CT) (a blocker of Gbeta gamma-action), strongly inhibited the alpha2-adrenergic-dependent increase in tyrosyl phos- phorylation and shift of ERK2, without modification of the tyrosyl phosphorylation of pp125(FAK) and spreading of preadipocytes. These results show that alpha2-adrenergic-dependent reorganization of actin cytoskeleton requires the activation of p21(rhoA) in preadipocytes. Conversely to the activation of the p21(ras)/mitogen-activated protein kinase pathway, the alpha2-adrenergic activation of p21(rhoA)-dependent pathways are independent of the beta gamma-subunits of heterotrimeric G proteins.  相似文献   

17.
A cDNA encoding the rat mu-opioid receptor was expressed stably in a Rat-1 fibroblast cell line. Expression of this receptor was demonstrated with specific binding of the mu-opioid selective ligand [3H][D-Ala2,N-MePhe4,Gly5-ol]-enkephalin ([3H]DAMGO). In membranes of clone mu11 cells DAMGO produced a robust, concentration-dependent stimulation of basal high affinity GTPase activity. Cholera toxin-catalyzed [32P]ADP-ribosylation in membranes of this clone labelled a 40 kDa Gi family polypeptide(s) that was markedly enhanced by the addition of DAMGO. Antisera against Gi2alpha and Gi3alpha were both able to immunoprecipitate a [32P]-radiolabelled 40 kDa polypeptide(s) from DAMGO and cholera-toxin treated membranes of clone mu11, indicating that the mu-opioid receptor was able to interact effectively with both Gi2 and Gi3 in Rat-1 fibroblasts. A series of peptides derived from the delta-opioid receptor sequence were assessed for their ability to modify agonist-stimulated G protein activation and [3H] agonist binding to the receptor. In membranes from the clone mu11, specific binding of [3H]DAMGO was reduced by peptides corresponding to the NH2-terminal region of the third intracellular loop (i3.1) and the carboxyl-terminal tail (i4) of this receptor. Agonist stimulated GTPase activity and DAMGO dependent cholera toxin-catalyzed [32P]ADP-ribosylation were inhibited by peptides derived from the proximal (i3.1) and the distal portion (i3.3) of the third intracellular loop. Peptide i3.1 also inhibited DAMGO-stimulated [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTP-gammaS) binding in the same membranes. In contrast, peptides derived from the second intracellular loop were without any effect.  相似文献   

18.
BACKGROUND: Abnormal alpha 2-adrenergic receptor (AR) function is implicated in anxiety and depressive disorders. Premenstrual dysphoric disorder (PMDD) is characterized by anxiety and depressive symptoms, which may be associated with changes in alpha 2AR function. Previous studies on alpha 2AR function during phases of the menstrual cycle in controls and PMDD patients are inconsistent. METHODS: alpha 2AR function was examined in 16 PMDD patients and 15 controls during the follicular phase, and in 10 PMDD patients during late luteal phase. Antagonist-measured maximum binding capacity, agonist-measured receptor density in high- and low-conformational states, and agonist affinity to both states were measured. Coupling efficiency to Gi protein was estimated. RESULTS: There were no significant differences in coupling efficiency. PMDD patients had significantly low antagonist affinity; there were no differences in other binding parameters. There were no changes in alpha 2AR binding parameters between phases of menstrual cycle in PMDD women. alpha 2AR density and symptom severity were inversely related during the follicular phase in controls and patients. During luteal phase, alpha 2AR density correlated positively with symptom severity in patients. High follicular alpha 2AR density predicted more severe luteal symptoms in PMDD patients. CONCLUSIONS: These findings are discussed in view of the molecular biology of alpha 2AR, and their role in PMDD, anxiety, and depressive disorders.  相似文献   

19.
The alpha2-adrenergic receptors (alpha2-ARs), which primarily couple to inhibition of cAMP production, have been reported to have a stimulating effect on adenylyl cyclase activity in certain cases. When expressed in Spodoptera frugiperda Sf9 cells the alpha2A subtype showed only inhibition of forskolin-stimulated cAMP production when activated by norepinephrine (NE), whereas the alpha2B subtype displayed a biphasic dose-response curve with inhibition at low concentrations of NE and a potentiation at higher concentrations. To further investigate the subtype-specific coupling, we expressed a set of chimeric alpha2A-/alpha2B-ARs at similar expression levels in Sf9 cells to determine the structural domain responsible for the difference between the two subtypes. When the third intracellular loops were interchanged between alpha2A and alpha2B subtypes, the coupling specificity remained unchanged, indicating that this loop does not confer selectivity toward a stimulating response. A biphasic dose-response curve, typical for the alpha2B subtype, could be seen when the second intracellular loop of the alpha2B subtype was inserted into the alpha2A subtype, suggesting that this loop is important for determining the subtype-specific coupling of alpha2-ARs to cAMP production. Site-directed mutagenesis of non-conserved amino acids in the second intracellular loop of the alpha2A subtype indicated that several residues are involved in the coupling specificity.  相似文献   

20.
Studies on frequency and distribution pattern of TSH receptor (TSHR) and Gs alpha protein (gsp) mutations in toxic thyroid nodules (TTNs) reported conflicting results, most likely also related to the different screening methods applied and the investigation of only part of exon 10 of the TSHR. Therefore, we screened a consecutive series of 31 TTNs for both TSHR and gsp mutations by direct sequencing of exon 9 and the entire exon 10 of the TSHR gene and exons 7-10 of the gsp gene. Somatic TSHR mutations were identified in 15 of 31 TTNs. TSHR mutations were localized in the third intracellular loop (Asp619Gly and Ala623Val), the sixth transmembrane segment (Phe631Leu and Thr632Ile, Asp633Glu) and the second extracellular loop (Ile568Thr). One mutation was found in the extracellular TSHR domain (Ser281Asn). Two new TSHR mutations were identified. One involves codon 656 in the third extracellular loop (Val656Phe). The other new mutation is a 27-bp deletion in the third intracellular loop resulting in deletion of 9 amino acids at codons 613-621. Transient expression of the new TSHR mutations in COS-7 cells demonstrated their constitutive activity. No mutation was found in exons 7-10 of the gsp gene. This finding was confirmed by an allele-specific PCR for mutations in gsp codons 201 (Arg-->His, Cys) and 227 (Gln-->His, Arg). Our data indicate that constitutively activating TSHR mutations can be found in 48% of TTNs and thus currently represent the most frequent molecular mechanism known in the etiopathogenesis of TTNs. Moreover, the absence of gsp mutations in our series argues for an only minor role of these mutations in TTNs. Constitutive activation of the TSHR by a deletion in a region that might be involved in G protein coupling of the TSHR offers new insights into TSHR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号