首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
BACKGROUND: In the BioDeNOX technology for NOX removal from flue gas, bioreduction of Fe(II)EDTA‐NO and Fe(III)EDTA are core processes. In this study, a newly isolated strain, Paracoccus denitrificans, was used to reduce Fe(II)EDTA‐NO with glucose and Fe(II)EDTA as donor electrons. To better understand the change law of Fe(II)EDTA, the process of Fe(II)EDTA‐NO reduction by P. denitrificans with glucose and Fe(II)EDTA as electron donors was investigated, and the factors that might affect Fe(II)EDTA concentration were studied. RESULTS: For the bioreduction process of Fe(II)EDTA‐NO, P. denitrificans could use glucose and Fe(II)EDTA as electron donors. At different stages, primary electron donors were different, thereby affecting the concentration of Fe(II)EDTA in the system. It was also proved that this strain not only reduced Fe(III)EDTA with glucose as the electron donor but also secreted several substances that reacted with Fe(III)EDTA, resulting in increased Fe(II)EDTA concentration in the solution. CONCLUSIONS: This work has shown that P. denitrificans can reduce Fe(II)EDTA‐NO and Fe(III)EDTA simultaneously to regenerate NOX absorption solution. © 2012 Society of Chemical Industry  相似文献   

2.
The biological reduction of nitric oxide (NO) in aqueous solutions of FeEDTA is an important key reaction within the BioDeNOx process, a combined physico‐chemical and biological technique for the removal of NOx from industrial flue gasses. To explore the reduction of nitrogen oxide analogues, this study investigated the full denitrification pathway in aqueous FeEDTA solutions, ie the reduction of NO3?, NO2?, NO via N2O to N2 in this unusual medium. This was done in batch experiments at 30 °C with 25 mmol dm?3 FeEDTA solutions (pH 7.2 ± 0.2). Also Ca2+ (2 and 10 mmol dm?3) and Mg2+ (2 mmol dm?3) were added in excess to prevent free, uncomplexed EDTA. Nitrate reduction in aqueous solutions of Fe(III)EDTA is accompanied by the biological reduction of Fe(III) to Fe(II), for which ethanol, methanol and also acetate are suitable electron donors. Fe(II)EDTA can serve as electron donor for the biological reduction of nitrate to nitrite, with the concomitant oxidation of Fe(II)EDTA to Fe(III)EDTA. Moreover, Fe(II)EDTA can also serve as electron donor for the chemical reduction of nitrite to NO, with the concomitant formation of the nitrosyl‐complex Fe(II)EDTA–NO. The reduction of NO in Fe(II)EDTA was found to be catalysed biologically and occurred about three times faster at 55 °C than NO reduction at 30 °C. This study showed that the nitrogen and iron cycles are strongly coupled and that FeEDTA has an electron‐mediating role during the subsequent reduction of nitrate, nitrite, nitric oxide and nitrous oxide to dinitrogen gas. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
He Lin  Xiang Gao  Kefa Cen  Zhen Huang 《Fuel》2004,83(9):1251-1255
This paper researches on the reduction of NOx (DeNOx) from wet flue gas by a DC corona radical shower system. The experimental results show that the water vapor in the flue gas not only reduces the corona but also reduces the discharge current. The DeNOx efficiency and the quantity of NOx removal per unit energy can be enhanced by raising the concentration of water vapor in the flue gas properly and the maximum quantity of NOx removal per unit energy is more than 25.5 g as the humidity of the flue gas ranges from 10 to 12%. The longer the flue gas resides in the reactor, the higher the DeNOx efficiency is and the lesser NOx will be reduced by per unit power.  相似文献   

4.
Since about ten years — especially in Japan — processes for simultaneous wet removal of SO2 and NOx from waste gases of power plants and industrial combustions are in development or even in practice. During the absorption of SO2 in alkaline solutions sulfite ions are formed which can be used for NOx reduction. Whereas nitrogen dioxide is chemisorbed in appreciable amounts, nitrogen monoxide is merely physically absorbed in low quantities. To enhance the effectiveness of NO absorption, chelate complexes are added to the absorbent. The present work gives a survey on the chemistry of this simultaneous NO/SO2 process of the absorption/reduction type. The experiments were performed in a laboratory setup with a jet tube reactor characterised by a large gas/liquid interfacial area. The main parameters influencing the NO/SO2 absorption in Fe(II)EDTA-containing solutions were studied.  相似文献   

5.
The oxidation process of the nitrosyliron(II)EDTA complex which was produced by the reaction of Fe(II)EDTA and NO?2 has been studied by the rotating disk electrode and the spectroscopic methods. The oxidation of Fe(II)(NO)xEDTA proceeds via two steps occurring at different potentials. The first step is the oxidation of Fe(II)EDTA to Fe(III)EDTA which is limited by the rate of chemical reaction, and the second is oxidation of NO to NO?3 which corresponds to surface controlled process. This result suggests the possibility that the noxious species can be transferred to the innocuous ion.  相似文献   

6.
Ceria (CeO2) is considered as one of materials for the simultaneous removal of SOx and NOx from flue gas. Ceria was coated on honeycomb and tested for adsorption of SO2 and reduction of NO with ammonia. Experimental results showed the characteristics similar to copper oxide but reactivity for NO reduction was higher in broader temperature range compared with the latter.  相似文献   

7.
An experimental study of the SNCR process with urea as reducing agent and sodium salts as additive has been carried out, and detailed analysis of the reaction mechanism has been given here. In the temperature range of 800–975 °C, NO concentration decreases at first and then increases while the concentration of N2O increases at first and then decreases with the increasing of temperature, and the turning point is 900 °C. With increasing of normalized stoichiometric ratio of reduction nitrogen to NO x (NSR), NO removal efficiency increases, while the concentration of N2O also increases, which decreases overall NO x removal efficiency. With sodium salts as additive, the concentration of N2O decreases with increasing of sodium salts addition at all temperatures, while the concentration of NO decreases at first and then increases at low-temperature side of the temperature window and increases at high-temperature side with additional increasing, whose changing extent is smaller than N2O. Since sodium salts as additive can remove N2O effectively and have no large influence on the removal of NO, the effect of sodium salts as additive is the combined effect of the production of active radicals and the removal of HNCO produced by the decomposition of urea through neutralization reactions, which is more important. To achieve the same effect under each condition, the needed addition of NaOH and CH3COONa is less than that of Na2CO3 counting as Na atom. For the decomposition of CH3COONa can produce CH3COO, its addition can promote the reduction of NO more obviously at the lower temperature than Na2CO3 or NaOH. Overall NO x removal efficiency at 900 ‡C with NSR=1.5 had been improved from about 30% to 70.45% through the addition of sodium salts. Sodium salts as additive caused the flue gas to become alkaline gas, but it was not serious for sodium salts existing as NaNCO.  相似文献   

8.
He Lin  Xiang Gao  Kefa Cen 《Fuel》2004,83(10):1349-1355
Removal of NOx (namely DeNOx) from simulated flue gas with direct current (d.c.) corona radical shower system was investigated. Steady streamer coronas occur when the flow rates of the fed gases are adjusted properly. The experimental results show that both the composition and the flow rate of the gas fed into the nozzles influence the V-I characteristic of corona discharge. The vapor in the flue gas restrains the discharge, reduces the discharge current, but enhances the DeNOx efficiency. Furthermore, removal of NOx from flue gas by radical injection associated with alkali solution (26% by weight of NaOH in water) scrubbing was carried out. Oxygen together with water vapor is fed into the nozzle electrode and the oxygen and water molecules are decomposed in the corona zone. It is found that NO and NO2 can be converted into HNO2 and HNO3, respectively, by radicals formed during the discharge process and the conversion efficiency of NOx in the plasma reactor is more than 60%. The overall DeNOx efficiency of the system reaches 81.7% after the flue gas was scrubbed by the NaOH solution.  相似文献   

9.
The combined absorption of NO and SO2 into the Fe(II)-ethylenediamineteraacetate(EDTA) solution has been realized. Activated carbon is used to catalyze the reduction of FeIII-EDTA to FeII-EDTA to maintain the ability to remove NO with the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO2 dissolved into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, pH value, temperature of absorption and regeneration, O2 partial pressure, sulfite/bisulfite and chloride concentration on the combined elimination of NO and SO2 with FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon. The experimental results indicate that NO removal efficiency increases with activated carbon mass. There is an optimum pH of 7.5 for this process. The NO removal efficiency increases with the liquid flow rate but it is not necessary to increase the liquid flow rate beyond 25 ml min?1. The NO removal efficiency decreases with the absorption temperature as the temperature is over 35 °C. The Fe2+ regeneration rate may be speeded up with temperature. The NO removal efficiency decreases with O2 partial pressure in the gas streams. The NO removal efficiency is enhanced with the sulfite/bisulfite concentration. Chloride does not affect the NO removal. Ca(OH)2 and MgO slurries have little influence on NO removal. High NO and SO2 removal efficiencies can be maintained at a high level for a long period of time with this heterogeneous catalytic process.  相似文献   

10.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

11.
BACKGROUND: The ongoing emission of nitric oxide (NO) is a serious persistent environmental problem, because it contributes to atmospheric ozone destruction and global warming. A novel and effective system was developed for the complete treatment of NO from flue gases. The system features NO absorption by FeII(EDTA) and biological denitrification in a rotating drum biofilter (RDB). RESULTS: After 100 mg L?1 FeII(EDTA) was added to the nutrient solution, the results show that the NO removal efficiency was improved from 70.56% to 80.15%, the optimal temperature improved from 32.5 °C to 40.5 °C, and the pH improved from 7.5 to 8.0–8.3. A maximum NO removal efficiency of 96.5% was achieved when 500 mg L?1 FeII(EDTA) was used in the nutrient solution. CONCLUSION: This experiment demonstrates that FeII(EDTA) could not only improve the mass transfer efficiency of NO from gas to liquid, but also serve as an electron donor for the biological reduction of NO to N2. The new integrated treatment system seemed to be a promising alternative for the complete treatment of NO from flue gases. © 2012 Society of Chemical Industry  相似文献   

12.
NO x adsorption was measured with a barium based NOx storage catalyst at an engine bench equipped with a lean burn gasoline direct injection engine (GDI). In order to study the influence of gas phase NO2 on the NOx storage efficiency two different pre-catalysts were used: One with excellent NO oxidation activity to produce a high NO2 concentration and another pre-catalyst without NO oxidation activity and therefore high NO concentration at the NO x storage catalyst inlet. Both pre-catalyst had excellent HC and CO conversion efficiency and therefore the CO and HC concentration at the NO x storage catalyst inlet was practically zero. No lean NO x reduction was observed. Under that conditions, experiments with NO x storage catalysts of different length show that a high NO2 inlet concentration did not enhance the NO x storage efficiency. Moreover, we observed reduction of NO2 to NO over the NOx storage catalyst. However, in presence of a high NO inlet concentration NO2 formation was observed which may proceed parallel to NO x storage.  相似文献   

13.
T. Raju 《Electrochimica acta》2009,54(12):3467-3472
Electrochemical removal of NO and NO2 by using Ag(I)/Ag(II) redox mediator system in nitric acid medium by two-stage scrubbing process was investigated. Experiments were carried out for the complete removal of NO and NO2 from the stimulated flue gas at room temperature and atmospheric pressure. The process parameters like current density, Ag(I) concentration, HNO3 concentration, initial concentration of NO, Ag(I) concentration and temperature were studied and optimized. A removal efficiency of >99% was achieved using this sustainable redox process. Ag(II)/Ag(I) can be regenerated and reused for the scrubbing of waste gases continuously and there is no other gases emission during scrubbing.  相似文献   

14.
A novel dual‐zone fluidized bed reactor was proposed for the continuous adsorption and reduction of NOx from combustion flue gases. The adsorption and reaction behaviour of such a reactor has been simulated in a fixed bed reactor using Fe/ZSM‐5 catalyst and propylene reductant with model flue gases. Fe/ZSM‐5 exhibited acceptable activity at T = 350°C and GHSV = 5000 h?1 when O2 concentration was controlled at levels lower than 1% with a HC to NO molar ratio of about 2:1. XPS and BET surface area measurement revealed the nature of the deactivation of the catalyst. Those performance data demonstrated the feasibility of a continuous dual‐zone fluidized bed reactor for catalytic reduction of NOx under lean operating conditions.  相似文献   

15.
SO x and NO x have both previously been identified as primary precursors of acid rain, and thus the abatement of SO x and NO x emissions constitutes a major target in the field of air pollution control. In this study, the efficacy of a pilot-scale scrubber was evaluated with regard to the simultaneous removal of SO2, NO and particulate with wet catalysts. The removal efficiencies of particulate were measured to be 83, 92 and 97% with catalyst flux of 0.5, 0.8 and 1.5 L/min, respectively. The average removal efficiencies of particulate with different nozzles were approximately 94 and 90% with FF6.5 (5/8 in.) and 14 W (1.0 in.) nozzles, respectively. At least 96–98% of particulate and SO2 were removed, regardless of the stage number of reactor. In a one-stage scrubber, 83.3% removal efficiency of NO was achieved after 48 hours; however, the two-stage scrubber achieved an NO removal efficiency of 95.7%. Regardless of the liquid-gas ratio, SO2 and particulate were removed effectively, whereas NO was removed about 84% and 74% under liquid-gas ratio conditions of 39.32 L/m3 and 27.52 L/m3, respectively. In experiments using STS and P.P. pall ring as packing material, particulate and SO2 removal efficiency values in excess of 98% were achieved; however, NO removal was correlated with the different packing materials tested in this study. With the above optimum operation conditions, even after 20 hours, the removal efficiency for NO stayed at 95% or higher, the removal efficiency for SO2 stayed at 97% or higher, and the removal efficiency for particulate stayed at 92% or higher. In accordance, then, with the above results, it appears that this process might be utilized in scrubber systems, as well as systems designed to simultaneously remove particulate, SO2 and NO from flue gas.  相似文献   

16.
NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated based on field tests measurements.  相似文献   

17.
介质阻挡放电中气体成分对NOx脱除的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
汪涛  孙保民  肖海平  杜旭  曾菊瑛  段二朋  饶甦 《化工学报》2012,63(11):3652-3659
利用介质阻挡放电(DBD)产生低温等离子体进行烟气的脱硝实验,研究了在乙烯存在的条件下,温度和其他烟气成分对NOx脱除率的影响。结果表明:随着温度的升高,NO脱除速率增快;模拟烟气中加入CO2,在能量密度较低时,CO2作为电负性分子会降低自由基的生成,导致NO的脱除率降低,随着能量密度的升高,CO2对NO脱除的影响减小;模拟烟气中加入水后可以产生更多的OH、HO2等自由基,促进NO的氧化;SO2的加入会与自由基O反应,使初始反应中O与C2H4的反应速率减弱,从而影响了NO的氧化速率,但O3、HO2等强氧化自由基会优先与NO反应,因此SO2的加入不会影响NO最终的脱除率。  相似文献   

18.
In this study, we propose a plasma-chemical hybrid NOx removal process using nonthermal plasma for the treatment of flue gases emitted from glass melting furnaces; the process is demonstrated through a laboratory-scale model experiment conducted using a semi-dry desulfurization apparatus. The performance of the system for simultaneous removal of SO2 and NOx is investigated. As a result, NO is effectively oxidized to NO2 by injecting ozone into the spray region and the removal efficiencies of 90% and 50% were obtained for NO and NOx, respectively. In addition, the SO2 removal efficiency of 84% was achieved.  相似文献   

19.
The potential of the sorbent-catalysts prepared from three low cost materials, i.e., the lime, fly ash and some industrial waste material containing iron oxide, have been investigated for simultaneous removal of SO2 and NO x from flue gas in the temperature range 700–850 °C. NH3 was chosen as the reducing agent for NO reduction in this study. Experimental results showed that SO2 and NO could be simultaneously removed efficiently in the absence of O2 at the temperature window of 700–800 °C. The effect of product layer generated from SO2 removal on NO removal was not obvious. NO removal efficiency was strongly inhibited by O2, which was attributed to the partial oxidation of NH3 to NO over the sorbent-catalysts in the presence of oxygen. Neither NO2 nor N2O by-product was detected both in the absence and presence of O2. Three routes were suggested to overcome the negative effect of O2. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

20.
Z.S. Wei  G.H. Zeng  Z.R. Xie  C.Y. Ma  X.H. Liu  J.L. Sun  L.H. Liu 《Fuel》2011,90(4):1599-205
Non-thermal plasma technology is a promising process for flue gas treatment. Microwave catalytic NOx and SO2 removal simultaneously has been investigated using FeCu/zeolite as catalyst. The experimental results showed that a microwave reactor with FeCu/zeolite only could be used to microwave catalytic oxidative 91.7% NOx to nitrates and 79.6% SO2 to sulfate; the reaction efficiencies of microwave catalytic reduction of NOx and SO2 in a microwave reactor with FeCu/zeolite and ammonium bicarbonate (NH4HCO3) as a reducing agent could be up to 95.8% and 93.4% respectively. Microwave irradiation accentuates catalytic reduction of SO2 and NOx treatment, and microwave addition can increases SO2 removal efficiency from 14.5% to 18.7%, and NOx removal efficiency from 13.4% to 18.7%, separately. FeCu/zeolite catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectrum analysis (XPS), scanning electron microscopy (SEM) and the Brunauer Emmett Teller (BET) method. Microwave catalytic NOx and SO2 removal follows Langmuir-Hinshelwood (L-H) kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号