首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
An isotactic polypropylene (i‐PP) microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning apparatus developed in our laboratory. The CO2 laser‐thinning apparatus could wind up the obtained microfiber in the range of 100 m min?1 to 2500 m min?1. The diameter of the microfiber decreased and its birefringence increased with increasing winding speed. When the microfiber obtained by irradiating the CO2 laser operated at a power density of 31.8 W cm?2 to the original fiber supplied at 0.30 m min?1 was wound at 1,387 m min?1, the obtained microfiber had a diameter of 3.5 μm and a birefringence of 25 × 10?3. The draw ratio calculated from the supplying and the winding speeds was 4,623‐fold. The SEM photographs showed that the obtained microfibers had a smooth surface without a surface roughened by a laser‐ablation and were uniform in diameter. The wide‐angle X‐ray diffraction photographs of the microfibers wound at 848 and 1,387 m min?1 showed the existence of the oriented crystallites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 27–31, 2006  相似文献   

2.
Nylon 66 microfibers were obtained by a carbon dioxide (CO2) laser‐thinning method. A laser‐thinning apparatus used to continuously prepare microfibers consisted of spools supplying and winding the fibers, a continuous‐wave CO2‐laser emitter, a system supplying the fibers, and a traverse. The diameter of the microfibers decreased as the winding speed increased, and the birefringence increased as the winding speed increased. When microfibers, obtained through the laser irradiation (at a power density of 8.0 W cm?2) of the original fiber supplied at 0.23 m min?1, were wound at 2000 m min?1, they had a diameter of 2.8 μm and a birefringence of 46 × 10?3. The draw ratio calculated from the supplying and winding speeds was 8696×. Scanning electron microscopy showed that the microfibers obtained with the laser‐thinning apparatus had smooth surfaces not roughened by laser ablation that were uniform in diameter. To study the conformational transition with winding speed, the changes in trans band at 936 cm?1 and gauche band at 1136 cm?1 were measured with a Fourier transform infrared microscope. The trans band increased as the winding speed increased, and the gauche band decreased. Young's modulus and tensile strength increased with increasing winding speed. The microfiber, which was obtained at a winding speed of 2000 m min?1, had a Young's modulus of 2.5 GPa and tensile strength of 0.6 GPa. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 802–807, 2006  相似文献   

3.
A high temperature zone‐drawing method was applied to a nylon 66 microfiber, obtained by using CO2 laser‐thinning, to develop its mechanical properties. The microfiber used for the high temperature zone‐drawing was prepared by winding at 150 m min?1 the microfiber obtained by irradiating the laser at 4.0 W cm?2 to an original fiber with a diameter of 50 μm, and had a diameter of 9.6 μm and a birefringence of 0.019. The high temperature zone‐drawing was carried out in two steps; the first drawing was carried out at a temperature of 230°C at supplying and winding speeds of 0.266 and 0.797 m min?1, the second at 250°C at supplying and winding speeds of 0.266 and 0.425 m min?1, respectively. The diameter of the microfiber decreased, and its birefringence increased stepwise with the processing. The high temperature zone‐drawn microfiber finally obtained had a diameter of 4.2 μm, a birefringence of 0.079, total draw ratio of 4.8, tensile modulus of 12 GPa, and tensile strength of 1.0 GPa. The wide‐angle X‐ray diffraction photograph of the drawn microfiber showed the existence of highly oriented crystallites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 42–47, 2006  相似文献   

4.
Poly(L-lactic acid) (PLLA) microfibers were obtained by a carbon dioxide (CO2) laser-thinning method. A laser-thinning apparatus used to continuously prepare microfibers was developed in our laboratory; it consisted of spools supplying and winding the fibers, a continuous-wave CO2-laser emitter, a system supplying the fibers, and a traverse. The laser-thinning apparatus produced PLLA microfibers in the range of 100-800 m min−1. The diameter of the microfibers decreased as the winding speed increased, and the birefringence increased as the winding speed increased. When microfibers, obtained through the laser irradiation (at a laser power of 8.0 W cm−2) of the original fiber supplied at 0.4 m min−1, were wound at 800 m min−1, they had a diameter of 1.37 μm and a birefringence of 24.1×10−3. The draw ratio calculated from the supplying and winding speeds was 2000×. The degree of crystal orientation increased with increasing the winding speed. Scanning electron microscopy showed that the microfibers obtained with the laser-thinning apparatus had smooth surfaces not roughened by laser ablation that were uniform in diameter. The PLLA microfiber, which was obtained under an optimum condition, had a Young's modulus of 5.8 GPa and tensile strength of 0.75 GPa.  相似文献   

5.
A zone‐drawing and zone‐annealing method was applied to a poly(ethylene terephthalate) microfiber, obtained by using CO2 laser thinning, to develop its mechanical properties. The microfiber used for the zone drawing and zone annealing was prepared by winding at 1386 m/min the microfiber obtained by irradiating the laser at 18.1 W/cm2 and had a diameter of 2.8 μm and a birefringence of 0.097. Zone drawing was carried out at a drawing temperature of 105°C under an applied tension of 53 MPa, and zone annealing at an annealing temperature of 155°C under 195 MPa applied tension. Zone drawing and zone annealing were carried out at a treatment speed of 0.21 m/min. The diameter of the microfiber decreased, and its birefringence increased, with zone drawing and zone annealing. The zone‐annealed microfiber finally obtained had a diameter of 2 μm, a birefringence of 0.234, a tensile modulus of 17.9 GPa, and a tensile strength of 1.1 GPa. The wide‐angle X‐ray diffraction photograph of the zone‐annealed microfiber showed the existence of highly oriented crystallites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2989–2994, 2004  相似文献   

6.
In preliminary experiments to optimize the condition of a laser heating, zone drawing for poly(ethylene terephthalate) (PET) fiber, a microfiber was prepared by a continuous‐wave carbon dioxide (CW CO2) laser heating. CW CO2 laser heating was carried out at an extremely low applied tension (σa) at a higher laser power density (PD) as compared to the optimum condition for the laser heating, zone drawing of PET fiber reported previously. The microfibers were obtained by CO2 laser heating carried out at a PD of 15.8 W cm?2 and under a σa of 0.66 MPa or lower. The diameter of the fiber decreased with a decreasing σa and increasing PD. The smaller the diameter, the higher was its birefringence. The smallest diameter fiber obtained at σa = 0.17 MPa at PD = 21 W cm?2 had a diameter of 4.5 μm and a birefringence of 0.112, and its draw ratio estimated from the diameter reached 3086 fold. Such a high draw ratio was not previously attained by any drawing method. In a wide‐angle X‐ray diffraction photograph of the smallest diameter fiber, indistinct reflections due to oriented crystallites were observed. An SEM micrograph of the smallest diameter fiber showed a smooth surface without any crack and was uniform in diameter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3297–3283, 2003  相似文献   

7.
Akihiro Suzuki  Mahomi Kishi 《Polymer》2007,48(9):2729-2736
Poly(ethylene terephthalate) (PET) nonwoven fabric was prepared from microfibers obtained by using a carbon dioxide laser-thinning method. The PET nonwoven fabric obtained was made of the endless mircofibers with a uniform diameter without droplets. The fiber diameter can be varied by controlling airflow rate into the air jet and supplying speed of an original fiber into a laser-irradiating point. The fiber diameter decreased, and its birefringence increased as the airflow rate increased and the supplying speed decreased. When the microfiber prepared by irradiating the laser operated at a power density of 4.8 W cm−2 to the original fiber supplied at Ss = 0.15 m min−1 was dragged at an airflow rate of 30 L min−1, the thinnest microfiber with a diameter of 3.6 μm was obtained.  相似文献   

8.
An isotactic polypropylene (i‐PP) microfiber was obtained by irradiating a carbon dioxide laser to previously drawn fibers. To prepare the thinner i‐PP microfiber, it is necessary to previously draw original i‐PP fibers under an applied tension of 7.8 MPa at a drawing temperature of 140°C. The drawn fiber was heated under an applied tension of 0.3 MPa using the laser operated at a power density of 39.6 W cm?2. The thinnest i‐PP microfiber obtained under optimum conditions had a diameter of 1.8 μm and a birefringence of 30 × 10?3. Its draw ratio estimated from the diameter reached 51,630. It is so far impossible to achieve such a high draw ratio by any drawing. The wide‐angle X‐ray diffraction photograph of the microfiber shows the existence of the oriented crystallites. Laser‐heating allows easier fabrication of microfibers compared with the conventional technology such as the conjugate spinning. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1534–1539, 2004  相似文献   

9.
Nylon 66 nanofibers were prepared by irradiating as‐spun nylon 66 fibers with radiation from a carbon dioxide (CO2) laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The fiber diameter depended on the drawing conditions used, such as laser power, chamber pressure, laser irradiation point, and fiber supply speed. A nanofiber obtained at a laser power of 20 W and a chamber pressure of 20 kPa had an average diameter of 0.337 μm and a draw ratio of 291,664, and the drawing speed in the CO2 laser supersonic drawing was 486 m s?1. The nanofibers showed two melting peaks at about 257 and 272°C. The lower melting peak is observed at the same temperature as that of the as‐spun fiber, whereas the higher melting peak is about 15°C higher than the lower one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40015.  相似文献   

10.
Poly(ethylene‐2,6‐naphthalate) (PEN) nanofiber was prepared by a carbon dioxide (CO2) laser supersonic drawing. The CO2 laser supersonic drawing was carried out by irradiating the laser to the as‐spun PEN fiber in a low‐temperature supersonic jet. The supersonic jet was generated by blowing off air into a vacuum chamber from a fiber supplying orifice. The flow velocity from the orifice can be estimated by applying Graham's theorem from the pressure difference between the atmospheric pressure and the pressure of the vacuum chamber. The fastest flow velocity estimated was 396 m s?1 (Mach 1.15) at a chamber pressure of 6 KPa. The nanofiber obtained at Mach 1.15 was the oriented nanofibers with an average diameter of 0.259 μm, and its draw ratio estimated from the diameters before and after the drawing reached 430,822 times. The CO2 laser supersonic drawing is a new method to make nanofiber without using any solvent or removing the second component. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A nylon 6 microfiber was easily obtained through carbon dioxide laser heating. The laser heating was carried out in two steps: the first laser heating was performed under an applied tension of 36.7 MPa at a power density of 17.3 W cm?2, and the second was performed under 0.18 MPa at 51.81 W cm?2. The microfiber was obtained by the second laser heating of the fiber. The microfiber prepared under the optimum thinning conditions had a diameter of 1.9 μm and a birefringence of 46.2 × 10?3. Its draw ratio, estimated from the diameter, was 9895× (so far, it has been impossible to achieve such a high draw ratio by drawing). A (200) reflection and a (002/202) doublet due to an α form were observed on the equator, but no (200) reflection due to a γ form was observed. The morphology of the crystallites existing in the microfiber was only the α form. Laser heating made the microfiber more easily than conventional technologies, such as conjugate spinning, melt blowing, and flash spinning. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1449–1453, 2004  相似文献   

12.
Melamine microfibers were first prepared by centrifugal spinning. The stability and spinnability of a melamine–formaldehyde (MF) resin solution were improved as expected by adding various modifier combinations. Considering the storage stability of solutions characterized by visual inspection, turbidity tests, and viscosity measurements and combined with the fiber morphology, the optimal modifier combination was obtained. The spun fibers manifested a good morphology and thermal stability as measured by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Moreover, microfibers prepared by three spinning methods (centrifugal spinning, electrospinning, and centrifugal electrostatic spinning) were compared to choose the suitable spinning method for different fields in the future. This work provides systematic and scientific guidance on the synthesis of MF resin solutions and rapid mass production of melamine microfibers and also demonstrates that centrifugal spinning of melamine microfiber is a promising candidate for flame retardance and CO2 adsorption at elevated temperature. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46072.  相似文献   

13.
A novel hollow phenolic fiber was successfully prepared by the dissolution of the uncrosslinked core of the partially crosslinking spun filament derived from the melt spinning of the phenolic resin. A series of hollow phenolic fibers with various degrees of hollowness were obtained through different preparation processes. The hollow phenolic fibers were characterized with scanning electron microscopy, infrared spectrometry, and thermogravimetric analysis. The formation of the hollow core in the hollow phenolic fibers was attributed to partial crosslinking of the filaments during the curing process; the prepared hollow phenolic fibers had high crosslinkage after the second cure, their thermal stability was as excellent as that of the solid phenolic fiber, and their hollowness could be regulated from 5 to 85%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The influences of bulk diffusion and surface exchange on oxygen transport of (La0.6Ca0.4)(Co0.8Fe0.2)O3-δ (LCCF) hollow fiber membranes were investigated. As an outcome, two strategies for increasing the oxygen permeation were pursued. First, porous LCCF hollow fibers as support were coated with a 22 μm dense LCCF separation layer through dip coating and co-sintering. The oxygen permeation of the porous fiber with dense layer reached up to 5.10 mL min?1 cm-2 at 1000 °C in a 50 % CO2 atmosphere. Second, surface etching of dense LCCF hollow fibers with H2SO4 was applied. The surface etching of both inner and outer surfaces leads to a permeation improvement up to 86.0 %. This finding implies that the surface exchange reaction plays a key role in oxygen transport through LCCF hollow fibers. A good long-term (>250 h) stability of the asymmetric hollow fiber in a 50 % CO2 atmosphere was found at 900 °C.  相似文献   

15.
We determined that a poly(ethylene terephthalate) microfiber was easily obtained by irradiating a carbon dioxide laser to an annealed fiber. The annealed fiber was prepared by zone drawing and zone annealing. First, an original fiber was zone drawn at a drawing temperature of 90°C under an applied tension of 4.9 MPa, and the zone‐drawn fiber was subsequently zone annealed at 150°C under 50.9 MPa. The zone‐annealed fiber had a degree of crystallinity of 48%, a birefringence of 218.9 × 10?3, tensile modulus of 18.8 GPa, and tensile strength of 0.88 GPa. The microfiber prepared by laser heating the zone‐annealed fiber had a diameter of 1.5 μm, birefringence of 172.8 × 10?3, tensile modulus of 17.6 GPa, and tensile strength of 1.01 GPa. The draw ratio estimated from the diameter was 9165 times; such a high draw ratio has thus far not been achievable by any conventional drawing method. Microfibers may be made more easily by laser heating than by conventional technologies such as conjugate spinning. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1955–1958, 2003  相似文献   

16.
A number of U‐shaped K2NiF4‐type oxide hollow fiber membranes based on (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) were successfully prepared by a phase inversion spinning process. The PLNCG hollow fiber membranes were then used to investigate the effect of CO2 concentration in both the sweep gas and the feed air on the oxygen permeation flux. With pure CO2 as the sweep gas and even 10% CO2 in the feed air, a steady oxygen permeation flux of 0.9 mL/min·cm2 (STP) is obtained at 975°C during 310 h, and no decline of the oxygen permeation flux is observed. XRD, SEM and EDS characterizations show the spent membrane still maintains the intact microstructure and perfect K2NiF4‐type phase structure without carbonate, which indicates that the U‐shaped PLNCG hollow fiber membrane is a very stable membrane under CO2 atmosphere and has great potential for the practical application in oxyfuel techniques for CO2 capture and storage.©2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

17.
The direct dual layer spinning of Torlon®/silica hollow fibers with a neat Torlon® lumen layer is reported here for the first time. The dual layer fibers containing a porous Torlon®/silica main structure and a dense, pure Torlon® polymer bore‐side coating provide a simplified, scalable platform from which to construct hollow fiber amine sorbents for postcombustion CO2 capture. After fiber spinning, an amine infusion process is applied to incorporate PEI into the silica pores. After combining dilute Neoprene treatment followed by poly(aramid)/PDMS treatment, a helium permeance of the fiber sorbents of 2 GPU with a He/N2 selectivity of 7.4 is achieved. Ten of the optimized amine‐containing hollow fibers are incorporated into a 22‐inch long, 1/2 inch OD shell‐and‐tube module and the module is then exposed on the shell side to simulated flue gas with an inert tracer (14 mol % CO2, 72 mol % N2, 14 mol % He [at 100% R.H.]) at 1 atm and 35°C in a RTSA system for preliminary CO2 sorption experiments. The fibers are found to have a breakthrough and equilibrium CO2 capacity of 0.8 and 1.2 mmol/g‐ dry fiber sorbent, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41845.  相似文献   

18.
本文就熔融纺丝成形条件及后拉伸倍数对圆中空聚酯纤维中空度的影响进行了探讨。发现卷绕丝之中空度受凝固速率控制。强化成形条件,使凝固速率加快,则中空度增加。纤维在剪切拉伸过程中,中空度与拉伸倍数的关系同力与伸长的关系相似。拉伸丝中空度的增加,系空腔部份的减少不及纤维壁的变薄来得大所致。  相似文献   

19.
Electrospinning is one of the simple techniques for the production of polymer nano‐microfibers. In this study, hollow fibers from poly(methyl methacrylate) (PMMA) were formed by electrospinning under pressurized carbon dioxide (CO2) in a single processing step. The experiments were conducted at temperatures and pressures in the range 27–37°C and 4–6 MPa, respectively. At 5 MPa, CO2 seemed to have enough affinity to dissolve a portion of dichloromethane (DCM) to assist its evaporation. Under subcritical CO2, electrospun products with hollow core fibers having diameters of 4–16 μm were generated. The results confirmed that the change of operating parameters had a strong influence on the morphologies (crack or hollows) of the electrospun products. This study demonstrated that this process offers the possibility that electrospinning under pressurized CO2 will become an essential and useful method for the generation of polymer structures with hollow interiors. POLYM. ENG. SCI., 56:752–759, 2016. © 2016 Society of Plastics Engineers  相似文献   

20.
A Mo‐substituted lanthanum tungstate mixed proton‐electron conductor, La5.5W0.6Mo0.4O11.25?δ (LWM04), was synthesized using solid state reactions. Dense U‐shaped LWM04 hollow‐fiber membranes were successfully prepared using wet‐spinning phase‐inversion and sintering. The stability of LWM04 in a CO2‐containing atmosphere and the permeation of hydrogen through the LWM04 hollow‐fiber membrane were investigated in detail. A high hydrogen permeation flux of 1.36 mL/min cm2 was obtained for the U‐shaped LWM04 hollow‐fiber membranes at 975°C when a mixture of 80% H2?20% He was used as the feed gas and the sweep side was humidified. Moreover, the hydrogen permeation flux did not significantly decrease over 70 h of operation when fed with a mixture containing 25% CO2, 50% H2, and 25% He, indicating that the LWM04 hollow‐fiber membrane has good stability under a CO2‐containing atmosphere. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1997–2007, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号