首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differences are analyzed in distribution and time evolution of the temperature, moisture content, and drying-induced stresses generated by convective and microwave drying. The theoretical analysis of the drying induced stresses and the deformations of dried materials is based on the elastic and viscoelastic constitutive models. The theoretical predictions are confronted with the experimental data obtained by the acoustic emission (AE) method, which enable monitoring on line the development of the drying induced stresses. The system of double coupled differential equations of the thermomechanical drying model is solved numerically using the finite element (FEM) and the finite difference (FDM) methods. A cylindrical sample made of kaolin was chosen to compare experimental data with the model solution. Essential differences were identified in the analyzed items for convective and microwave drying as well as a significant difference in stress distribution was noted for elastic and viscoelastic constitutive models.  相似文献   

2.
Flexible polyurethane foam is widely used in numerous applications such as seats and mattresses, due to its low stiffness and its ability to absorb deformation energy. The main objective of this article is to model the quasi‐static mechanical behavior of three types of polyurethane foam in large deformation and to compare these three foams with three proposed models. The uniaxial compression/decompression tests at three different strain rates were performed. The test results show that the three foams present different plateau stresses, maximum stresses, and abilities to absorb energy. Moreover, polyurethane foam also presents a nonlinear hyperelastic behavior and a viscoelastic behavior in large deformation. Three visco‐hyperelastic models which include a hyperelastic component and a memory component are proposed to model these behaviors. Model parameters were identified using the experimental data and a proper identification method. These models were validated on these three types of foam with the aim to present comparison results. The comparison results show that Ogden's viscoelastic model best agrees with the experimental results. POLYM. ENG. SCI., 55:1795–1804, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
A thermoset coating that is applied to an elastic substrate will develop residual stresses during curing because of polymerization shrinkage of the resin. This shrinkage only partly contributes to the residual stresses because, before gelation, the stresses relax completely. In this study, we developed explicit analytical expressions for the curing efficiency factor, the residual stresses, and the resulting warpage. We did this by assuming that after gelation, the material was in its rubbery state and that viscoelastic effects were absent. A difference between the free and constrained warpages during curing was made. The analytical warpage models were shown to give results comparable to those of the numerical calculations with a fully curing‐dependent viscoelastic material model. Furthermore, for the first time, accurate analytical expressions for the stress‐free temperature and stress‐free strain were obtained. With these expressions, the effect of curing shrinkage on the residual stresses could easily be incorporated into existing (numerical) stress analysis without the need for extensive curing‐dependent viscoelastic material models. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012  相似文献   

4.
Dynamic oscillatory shear tests are common in rheology and have been used to investigate a wide range of soft matter and complex fluids including polymer melts and solutions, block copolymers, biological macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond. More specifically, small amplitude oscillatory shear (SAOS) tests have become the canonical method for probing the linear viscoelastic properties of these complex fluids because of the firm theoretical background [1], [2], [3] and [4] and the ease of implementing suitable test protocols. However, in most processing operations the deformations can be large and rapid: it is therefore the nonlinear material properties that control the system response. A full sample characterization thus requires well-defined nonlinear test protocols. Consequently there has been a recent renewal of interest in exploiting large amplitude oscillatory shear (LAOS) tests to investigate and quantify the nonlinear viscoelastic behavior of complex fluids. In terms of the experimental input, both LAOS and SAOS require the user to select appropriate ranges of strain amplitude (γ0) and frequency (ω). However, there is a distinct difference in the analysis of experimental output, i.e. the material response. At sufficiently large strain amplitude, the material response will become nonlinear in LAOS tests and the familiar material functions used to quantify the linear behavior in SAOS tests are no longer sufficient. For example, the definitions of the linear viscoelastic moduli G′(ω) and G″(ω) are based inherently on the assumption that the stress response is purely sinusoidal (linear). However, a nonlinear stress response is not a perfect sinusoid and therefore the viscoelastic moduli are not uniquely defined; other methods are needed for quantifying the nonlinear material response under LAOS deformation. In the present review article, we first summarize the typical nonlinear responses observed with complex fluids under LAOS deformations. We then introduce and critically compare several methods that quantify the nonlinear oscillatory stress response. We illustrate the utility and sensitivity of these protocols by investigating the nonlinear response of various complex fluids over a wide range of frequency and amplitude of deformation, and show that LAOS characterization is a rigorous test for rheological models and advanced quality control.  相似文献   

5.
A general-purpose finite element program has been used to simulate the flow of a typical polystyrene melt in the entry and exit regions of a slit die. Instead of using a general viscoelastic constitutive equation, simplified models were used that include correlations based on experimental data available in the literature for the shear and elongational viscosities and the normal stresses. With such simple models convergence of the iterative scheme is extended to relatively high Deborah numbers (De ≈ 5). The models predict vortex growth in the entry region and an increase of extrudate swell at the exit in qualitative agreement with experimental observations. It was found that the normal stresses are primarily responsible for these phenomena, while the elongational viscosity tends to increase the end (Bagley) correction and decrease the swelling.  相似文献   

6.
This article addresses how to express the behaviors that develop stresses within a porous media during convective drying processes. The work is focused on the coupling of the thermal (temperature distribution), hygroscopic (moisture, humidity), and mechanical (strains and stresses) aspects shown during the drying process of a saturated porous medium. Natural clay plate samples were used as a model material. Using two different mechanical behaviors (elastic and viscoelastic), the strain–stress equations were studied and discussed through the simulation results. Obtaining almost the same parameters of the main modeling variables (temperature, liquid pressure, and moisture content), a significant difference was observed between the results obtained for the stresses assuming the two behaviors, particularly depending on the viscoelastic parameters deduced from an experimental study. The simulation highlights a response of the medium supposed viscoelastic different to that of elastic case in intensity and response time.  相似文献   

7.
This work is part of a larger experimental program aimed at developing a semi‐empirical constitutive model for predicting creep in random glass mat thermoplastic (GMT) composites. The tensile creep response of a long‐fiber GMT material has been characterized for 3‐ and 6‐mm thick material. Tensile tests showed that the variability within and between plaques are comparable with an overall variability of about 6% and 8% for the 3‐ and 6‐mm thick materials, respectively. The thicker material exhibited slightly higher variability and directional dependence due to greater flow during molding of the plaques. Short‐term creep tests consisting of 30 min creep and recovery, respectively, were performed over the stress range between 5 and 60 MPa. Three tests for determining the linear viscoelastic region were considered which showed that the 3‐ and 6‐mm thick GMT are linear viscoelastic up to 20 and 25 MPa respectively. The 6‐mm thick GMT consisting of a higher fiber weight fraction was linear over wider stress range. Furthermore, it was found that plastic strains were accumulated during creep, which suggests that a nonlinear viscoelastic–viscoplastic model would be more appropriate for long‐term creep at relatively high stresses, which will be presented in our companion paper. The magnitude of the plastic strains developed in the creep tests presented here was lower because a single specimen was loaded at multiple stress level over short durations. Hence, a nonlinear viscoelastic constitutive model has been developed for the two thickness materials. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
曾国伟  刘浩轩  白凡  吴亮  周鹏 《硅酸盐通报》2020,39(12):4061-4067
为了研究钢渣沥青混合料非线性粘弹塑性变形特性,提出Schapery模型与改进Swchartz模型组合的积分型粘弹塑本构模型。采用钢渣替换AC-13级配中粒径2.36 mm以上的石灰石粗骨料,制作得到钢渣沥青混合料试件。设计并开展一系列的单轴压缩蠕变实验,通过应力递增蠕变回复实验,获得不同应力条件下材料的弹性、粘弹性应变和粘塑性应变,进而拟合确定本构模型参数。利用0.4 MPa、1.0 MPa下的蠕变回复实验验证模型有效性。结果表明,模型不仅能准确刻画钢渣沥青混合料蠕变过程中的弹性、粘弹性与粘塑性变形,还可用于预测不同应力水平下钢渣沥青混合料蠕变变形规律。  相似文献   

9.
The extensional and failure properties of polystyrene melts were studied by pulling sample rods in a special “weight dropping” extensiometer. This apparatus allows pulling to long final lengths and at relatively high rates; except for the highest rates, the experiment is one of constant applied force. Various commercial (broad molecular weight distribution) and special (narrow molecular weight distribution) samples were studied at various temperatures and applied forces. The striking result was that the former (BMWD) samples stretched reasonably uniformly and displayed what has been described as “viscoelastic failure”; the latter (NMWD) samples necked in the final stages and showed what might be called “viscous” failure. In the case of the BMWD material, the stress–time behavior was analyzed theoretically by independently determining the parameters in a nonlinear constitutive equation from GPC and rheogoniometer (shear) data. The theoretical tensile stresses compared quite well with the experimental values. An interesting result came from comparing the complete viscoelastic theory with a viscous (Trouton viscosity) asymptote. These two theoretical curves closely approximated the experimental data until just short of the failure point; at this incipient point, the stresses from the complete theory grew to very large values compared with the viscous stresses. That is, the material could not relax fast enough to allow steady stresses to develop, and the sample failed shortly thereafter.  相似文献   

10.
Hot compression molding is a promising method to fabricate polymer stand‐alone microlenses. A reliable theoretical as well as statistical analysis is required for the optimization of the process to minimize the residual stresses and to predict the amount of springback to achieve a better replication of the mold profile. This article in this context focuses on the finite element simulation (FES), optimization as well as experimental validation of hot compression molding of polymer stand‐alone microlenses. Three steps such as molding, cooling, and demolding, under different molding parameters, were analyzed using ABAQUS/standard solver and the results were compared with experimental results. Compression test and compression relaxation test have been conducted at different temperatures and strain rates to characterize the rheological behavior of material. Two material models, linear viscoelastic and hyperelastic–viscoelastic models, were developed and used for compression test simulations. Hyperelastic–viscoelastic model is found to predict the material behavior in low strain rates better and, thus, is used for the simulation of actual lens compression molding. Good agreement is found between the FES‐predicted curve and the lens profile molded at different molding temperatures. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

11.
Urushi is a complex natural polymer that has been used to protect and decorate objects for many hundreds of years. It is an important material as decorated objects can obtain great value and historical worth. These objects are often exposed to environments that are detrimental to both their aesthetic appeal and structural performance and restoration and conservation procedures are needed to preserve these objects over long periods of time. The conservation work requires a detailed understanding of the material properties of the Urushi lacquer film. However, Urushi exhibits complex viscoelastic behaviour under load that has not been fully characterised to date. This paper presents the sample preparation technique and experimental data from a comprehensive mechanical testing programme for Urushi film. The viscoelastic response was investigated by tests at various loading speeds and creep and recovery tests. A number of constitutive models were fitted to the creep and recovery data and a good fit was seen with a number of these, most notably a modified generalized Kelvin fluid (MGKF) model. Some samples of Urushi were artificially aged by laboratory exposure to ultraviolet (UV) irradiation before mechanical testing. The ageing increased strength and reduced the ductility of the Urushi and it was shown that the MGKF model was capable of modelling the ageing behaviour by using ageing-time dependent material parameters. The models were implemented in the commercial FEA software ABAQUS, offering the potential to accurately model the Urushi behaviour in a complex structure.  相似文献   

12.
The viscoelastic behavior of polypropylene before and after cyclic preloading was investigated by stress relaxation tests. The relaxation tests were performed after a simple uniaxial tension (number of cycles N = 0) and after the cyclic preloading (N = 50) by use of a closed loop, electrohydraulic, servocontrolled testing machine. The tests were conducted under different sets of strain rate, number of cycles, and strain amplitude. The experimental data were compared with theoretical results analyzed by use of a linear viscoelastic model. The three-element model consists of a Maxwell unit and a Hookean spring in parallel. The calculated results agree well with the experimental ones; in particular, in the relaxation tests after the cyclic preloading (N = 50), the calculated results agree very well with the experimental ones at both the predetermined strain rates of 1,000 μ/s and 10,000 μ/s, at a strain amplitude of ±5%. It can be seen that the linear viscoelastic model explains the viscoelastic characteristics of polypropylene despite the solution of the constitutive equation constructed by the simple three-element model.  相似文献   

13.
Yunlong Guo 《Polymer》2009,50(16):4048-1018
The long-term viscoelastic behavior of polymeric materials used below the glass transition temperature (Tg) is greatly affected by physical aging. In contrast to isothermal physical aging, long-term response under nonisothermal history has received far less attention. This paper reports experimental results and analytical methods of long-term creep behavior of polyphenylene sulfide (PPS) subjected to complex thermal histories in a temperature range below Tg. To characterize the effects of aging, creep tests were performed using a dynamic mechanical analyzer (DMA). Besides the long-term data, short-term creep tests in identical thermal conditions were also analyzed; these were utilized with effective time theory to predict long-term response under both isothermal and nonisothermal temperature histories. The long-term compliance after a series of temperature changes was predicted by the effective time theory using the KAHR-ate model to obtain nonisothermal physical aging shift factors. Comparison of theoretical predictions with experimental data shows good agreement for various thermal histories.  相似文献   

14.
Simulations of evolution of cure‐induced stresses in a viscoelastic thermoset resin are presented. The phenomenology involves evolution of resin modulus with degree of cure and temperature, the development of stresses due to crosslink induced shrinkage, and the viscoelastic relaxation of these stresses. For the simulations, the detailed kinetic and chemo‐thermo‐rheological models for an epoxy‐amine thermoset resin system, described in Eom et al. (Polym. Eng. Sci. 2000, 40, 1281) are employed. The implementation of this model into the simulation is facilitated by multiphysics simulation strategies. The trends in simulated cure‐induced stresses obtained using the full‐fledged viscoelastic model are compared with those obtained from two other equivalent material models, one involving a constant elastic modulus, and the other involving a cure‐dependent (but time‐invariant) elastic modulus. It is observed that the viscoelastic model not only results in lower estimates of cure‐induced stresses, but also provides subtle details of the springback behavior. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
In Part I of this article, the short‐term tensile creep of a 3‐mm‐thick continuous long‐fibre glass mat thermoplastic composite was characterized and found to be linear viscoelastic up to 20 MPa. Subsequently, a nonlinear viscoelastic model has been developed for stresses up to 60 MPa for relatively short creep durations. The creep response was also compared with the same composite material having twice the thickness for a lower stress range. Here in Part II, the work has been extended to characterize and model longer term creep and recovery in the 3‐mm composite for stresses up to near failure. Long‐term creep tests consisting of 1‐day loading followed by recovery were carried out in the nonlinear viscoelastic stress range of the material, i.e., 20–80 MPa in increments of 10 MPa. The material exhibited tertiary creep at 80 MPa and hence data up‐to 70 MPa has been used for model development. It was found that viscoplastic strains of about 10% of the instantaneous strains were developed under load. Hence, a non‐linear viscoelastic–viscoplastic constitutive model has been developed to represent the considerable plastic strains for the long‐term tests. Findley's model which is the reduced form of the Schapery non‐linear viscoelastic model was found to be sufficient to model the viscoelastic behavior. The viscoplastic strains were modeled using the Zapas and Crissman viscoplastic model. A parameter estimation method which isolates the viscoelastic component from the viscoplastic part of the nonlinear model has been developed. The model predictions were found to be in good agreement with the average experimental curves. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Numerical simulation of the heating stage of thermoplastics in thermoforming requires a good knowledge of the behavior of the materials used. To this end, a study is being conducted on the characterization of the viscoelastic behavior of a circular membrane, made of high-density polyethylene (HDPE), under the combined effect of temperature and the force of gravity. The experimental tests were carried out in a convection oven for five temperatures (100, 110, 120, 130 and 140°C). For the numerical characterization of the viscoelastic behavior, two viscoelastic models were considered: the classic Kelvin-Voigt model and the new three-parameter modified Burger's model (Jeffrey model) that we propose. The mechanical parameters of both models were identified using the Levenberg-Marquardt algorithm. The thermal-dependency of the viscosity was characterized by two thermal models: the Arrhenius law and the William-Landel-Ferry (WLF) equation.  相似文献   

17.
The goal of this work is to study the effect of different drying conditions on the induced stresses within deformable media, the drying kinetics, and the energy consumption. A comparison between stationary and intermittent drying with periodically changing air temperature was performed. A theoretical formulation of the coupled heat, mass, and momentum transfers in saturated porous media was established. The model is based on the averaging theory. The thermo-hydro-mechanical coupling was closed using the effective stress theory of Terzaghi. In this approach, the viscoelastic behavior of the medium was considered. A bi-dimensional-shaped bentonite sample was used for numerical tests. The evolution of drying kinetics and stresses within the material during drying at constant and intermittent conditions was presented. It was observed that a non-stationary drying with smaller period applied at the end of the constant drying rate phase has the best effects on the product quality and energy gain without considerably extending the drying time.  相似文献   

18.
Rubber compounds have highly viscoelastic properties. The viscoelastic behaviors that have been exhibited during die extrusion include die swell and vortices in regions of sudden contraction. In this study, the application of rheological models to the capillary die extrusion process is investigated. Experiments and simulations were conducted using a fluidity tester and finite element analysis, respectively. The velocity distributions, velocity profiles, pressure drops, and vortices at the capillary die entrance were analyzed through computer simulations for various viscoelastic models [i.e., Phan‐Thien and Tanner (PTT), Giesekus, POMPOM, simplified viscoelastic, and generalized Newtonian models]. Different models exhibited different pressure drops and different velocity profiles in the capillary die. Only the full viscoelastic models (PTT, Giesekus, and POMPOM) predicted the vortex at the corner of the reservoir that is the capillary die entrance. However, the simplified viscoelastic and generalized Newtonian models did not predict the vortex. All the viscoelastic models studied in this article predicted the die swells in various ways, and these were compared with the experimental results. The PTT and simplified viscoelastic models exhibited good agreement with the experimental results of the die swells. POLYM. ENG. SCI., 54:2441–2448, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
20.
Nonisothermal flow of a polymer melt in a cold mold cavity introduces stresses that are partly frozen-in during solidification. Flow-induced stresses cause anisotropy of mechanical, thermal, and optical properties, while the residual thermal stresses induce warpage and stress-cracking. In this study, the influence of the holding stage on the residual thermal stress distribution is investigated. Calculations with a linear viscoelastic constitutive law are compared with experimental results obtained with the layer removal method for specimens of polystyrene (PS) and acrylonitrile butadiene-styrene (ABS). In contrast to slabs cooled at ambient pressures, which show the well-known tensile stresses in the core and compressive stresses at the surfaces, during the holding stage in injection molding, when extra molten polymer is added to the mold to compensate for the shrinkage, tensile stresses may develop at the surface, induced by the pressure during solidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号