首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies were made on the membrane absorption of CO2 and/or SO2 using hydrophobic microporous hollow-fibre (HF) membrane modules. The absorbent liquids used were aqueous solutions of NaOH, K2CO3, alkanolamines and Na2SO3, flowing on the lumen side of the HF in laminar flow. A semi-empirical correlation was derived for the gas-phase mass-transfer coefficient on the shell side, by including geometrical factors of the HFs and the shell tube in the general correlation for mass transfer. It was found that the CO2 absorption rate in various aqueous solutions of alkalis and alkanolamines is successfully described by a model based on gas diffusion through the membrane pores subsequent to gas absorption accompanied by chemical reaction. The simultaneous membrane absorption of SO2 and CO2 was also studied using aqueous Na2SO3 solution, the selective removal of SO2 to CO2 being successfully achieved when both the liquid flow rate and solute concentration are low. This suggests that this membrane absorption method provides an energy saving process for SO2 removal from flue gases.  相似文献   

2.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

3.
The absorption of dilute CO2 into aqueous solutions of sterically hindered 2-methyl aminoethanol (MAE) and the desorption of CO2 from CO2-loaded MAE solutions into N2 stream were investigated separately for the various combinations of operational variables, using a hydrophobic microporous hollow fiber (polytetrafluoroethylene, PTFE) contained gas-liquid contactor with aqueous solutions of MAE as liquid media in the shell side at 30°C. The absorption of CO2 in this contactor is governed by resistance in the liquid and hollow fiber phases. The resistance to diffusion in the hollow fiber phase amounts to 76–80% of the total resistance. Nevertheless, the absorption rates of CO2 into aqueous MAE solutions in this contactor are higher than those into aqueous solutions of sterically hindered 2-amino-2-methyl-1-propanol (AMP) in the stirred tank with a plane unbroken gas-liquid interface. The process of desorption of CO2 from CO2-loaded MAE solutions can be regarded as being controlled by diffusion and chemical reaction in both the stagnant film of the liquid phase and the liquid-filled pore of the hollow fiber phase under the slow or intermediate reaction regime. Both absorption and desorption rates under the simultaneous absorption-desorption operation in a single unit tend to approach the respective constant values as process time elapses. The total absorption rate here seems to be almost balanced with the total desorpion rate at the constant mass transfer rate periods.  相似文献   

4.
《分离科学与技术》2012,47(9):1240-1251
An activated solution based on amino acid salt was proposed as a CO2 absorbent. Piperazine (PZ) was selected as an activating agent and added into the aqueous glycine salt to form the activated solution. A coupling process, which associated the activated solution with a PP hollow fiber membrane contactor, was set up. An experimental and theoretical analysis for CO2 capture was performed. The performances of CO2 capture by the coupling process were evaluated using the PZ activated solution and the non-activated glycine salt solution. A numerical model for the simulation of the hollow fiber membrane gas–liquid mass transfer was developed. Typical parameters such as outlet gas phase CO2 concentration, capture efficiency, and mass transfer coefficient for the activated solution were determined experimentally. The effects of operation temperature and liquid CO2-loading on mass transfer coefficient and capture efficiency were discussed in this work. Axial and radial concentration profiles of CO2 in the fiber lumen and mass transfer flux were simulated by the model. Results show that the performances of the PZ activated glycine salt solution are evidently better than that of the non-activated glycine salt solution in the membrane contactor for CO2 capture. Elevation of the operation temperatures can enhance the overall mass transfer coefficient. The activated solution can maintain higher capture efficiency especially in the case of high CO2-loadings. The gas phase CO2 concentration with the activated solution is lower than that with the non-activated solution whether along axial or radial distances in the fiber lumen. The model simulation is validated with experimental data.  相似文献   

5.
《Fuel》2003,82(15-17):2153-2159
A membrane-based gas–liquid contacting process was evaluated in this work for CO2 removal from flue gases. The absorption of CO2 from a CO2–N2 mixture was investigated using a commercial hollow fiber membrane contactor and water or diethanolamine as absorbing solvents. Significant CO2 removal (up to 75%) was achieved even with the use of pure water as absorbent. By using aqueous amine solutions and chemical absorption, mass transfer improved, and CO2 removal was nearly complete (∼99%). A mathematical model was developed to simulate the process and it was validated with experimental data. Results show that membrane contactors are significantly more efficient and compact than conventional absorption towers for acid gas removal.  相似文献   

6.
The absorption of CO2 from a mixture of CO2/N2 gas was carried out using a flat-stirred vessel and the polytetrafluoroethylene hollow fiber contained aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The reaction of CO2 with AMP was confirmed to be a second order reversible reaction with fast-reaction region. The mass transfer resistance in the membrane side obtained from the comparison of the measured absorption rates of CO2 in a hollow fiber contained liquid membrane with a flat-stirred vessel corresponded to about 90% of overall-mass-transfer resistance. The mass transfer coefficient of hollow fiber phase could be evaluated, which was independent of CO2 loading.  相似文献   

7.
To understand the behavior of separation of CO2 from CO2-N2 mixtures using a hydrophobic microporous hollow fiber (polytetrafluoroethylene) contained gas-liquid contactor with aqueous solutions of 2-amino-2-methyl-l-propanol (AMP) as liquid media in the shell side, first, the absorption of dilute CO2 into aqueous AMP solutions and the desorption of CO2 from CO2-loaded AMP solutions into N2 stream were investigated separately for various combinations of operational variables. Secondly, the simultaneous absorption and desorption in a single unit was performed to check the possibility of a long-term continuous operation. The resistance to diffusion in the hollow fiber phase during absorption amounted to ca. 86% of the total resistance, and slightly decreased with increasing AMP concentration. The AMP solution partially leaks into pores of the hollow fiber, and both the diffusion and chemical reaction of dissolved CO2 in the liquid-filled pores under the slow-reaction regime mainly control the overall absorption rate. If the physical diffusion in the liquid-filled part of the pore completely controlled the absorption process in the present hollow fiber contactor, the length of the liquid-filled part would be evaluated to be 72 ~ 108 urn as compared to the total pore length of 500 um. The desorption rate was found to be independent of the gas velocity in the lumen side. The desorption process can be regarded as being controlled by diffusion and chemical reaction in both the stagnant film of the liquid phase and the liquid-filled pore of the hollow fiber phase under the slow or intermediate reaction regime. Simultaneous absorption and desorption process in a single contactor was found to be kept in a stable state at least until 20?h.  相似文献   

8.
The membrane wetting by the liquid absorbents is an important problem in the operation of gas–liquid membrane contacting process. In order to gain a better understanding on the role of absorbents on membrane wetting, monoethanolamine (MEA, primary amine), diethanolamine (DEA, secondary amine), and 2-amino-2-methyl-1-propanol (AMP, sterically hindred amine) were applied as absorbent solutions. The membrane used for the experiments was the hollow fiber polyvinylidenefluoride (PVDF) membrane. The performance of both single and mixed amine solutions on the CO2 absorption capacity and membrane wetting potential were investigated. In addition, sodium chloride (NaCl, inorganic salt) and sodium glycinate (SG, organic salt) were added into the MEA aqueous solution to observe CO2 flux and membrane wetting.The results revealed that the use of MEA solution and SG as absorbents gave highest CO2 flux. The overall mass transfer coefficients obtained from the experiments also showed the same trend as CO2 flux, i.e, the values were in the following order: MEA> AMP > DEA. However, the long-term flux was monitored and it was found that MEA also gave lowest flux decline due to the membrane wetting. The use of mixed amine solutions and the addition of NaCl did not help protect the membrane wetting. On the contrary, the addition of SG in to MEA solution can improve flux and resulted in stable CO2 flux indicating that the membrane wetting was negligible.  相似文献   

9.
This paper tests the performance of microporous polyvinylidinefluoride (PVDF) hollow fiber in a gas absorption membrane process (GAM) using the aqueous solutions of piperazine (PZ) and 2-amino-2-methyl-1-propanol (AMP). Experiments were conducted at various gas flow rates, liquid flow rates and absorbent concentrations. Experimental results showed that wetting ratio was about 0.036% when used with the aqueous alkanolamine solutions, while that was 0.39% with aqueous piperazine solutions. The CO2 absorption rates increased with increasing both liquid and gas flow rates at NRe < 20. The increase of the PZ concentration showed an increase of absorption rate of CO2. The CO2 absorption rate was much enhanced by the addition of PZ promoter. The resistance of membrane was predominated as using a low reactivity absorbent and can be neglected as using absorbent of AMP aqueous solution. The resistance of gas-film diffusion was dominated as using the mixed absorbents of AMP and PZ. An increase of PZ concentration, the resistance of liquid-film diffusion decreased but resistance of gas-film increased. Overall, GAM systems were shown to be an effective technology for absorbing CO2 from simulated flue gas streams, but the viscosity and solvent-membrane relationship were critical factors that can significantly affect system performance.  相似文献   

10.
Selective and simultaneous separation of H2S and CO2 from CH4 was accomplished in a hollow‐fiber membrane contactor (HFMC). The absorption of both H2S and CO2 using an aqueous solution of methyldiethanolamine (MDEA) was almost complete and acid gases were totally removed. Despite the large difference between H2S and CO2 concentrations, the rate of H2S absorption was not significantly influenced by CO2 absorption. The independent effect and interactions of several process variables on the separation performance of H2S and CO2 were investigated. The results indicated that the membrane contactor could be a highly efficient choice for removal of almost all H2S in the presence of a large CO2 content even at high gas/liquid flow ratio. The selectivity of H2S was about three times higher compared to the conventional absorption packed towers.  相似文献   

11.
Aqueous solutions containing alkaline salts of natural amino acids, such as those from protein in plant seeds or high protein animal-based waste, are green CO2-separation solvents. In the present work, potassium salts of nine such amino acids were chosen for an in-depth study: alanine, arginine, aspartic acid, glutamic acid, glycine, leucine, proline, serine, and valine. The kinetics of CO2 absorption in aqueous solutions of these salts was studied using a stirred cell. From the measurements of the absorption rate at different salt concentrations (molarity 0.1 and higher), CO2 partial pressures (5–25 kPa), and temperatures (298–308 K), values of the reaction order, rate constant, and activation energy were determined. Additionally, the liquid-side mass transfer coefficient (0.005 cm/s) was also found. Potassium salts of proline, glycine, and arginine were most reactive and, hence, were chosen for equilibrium study. The loading capacity of these salts was measured at 308 K in a vapour–liquid equilibrium setup at near-ambient pressure. On the contrary, the other chosen acids were comparatively less reactive with CO2.  相似文献   

12.
Vapor–liquid equilibrium (VLE) measurements were carried out for both unloaded and CO2 loaded aqueous amino acid salt (AAS) solutions of the potassium salt of sarcosine (KSAR). Vapor–liquid equilibrium for unloaded solutions; 1.0–5.0 M KSAR was measured using a Swietoslawski ebulliometer for temperatures 40, 60, 80 and 100 °C and for total pressures 4.08–97.8 kPa while vapor–liquid equilibrium for CO2 loaded solutions of 3.5 M KSAR was measured using both low and high temperature VLE apparatuses for 40, 60, 80, 100 and 120 °C and for CO2 partial pressures ranging from 0.03 to 971 kPa. A thermodynamic model representing the AAS solvent system was developed using the extended UNIQUAC framework. The developed model accurately predicts the equilibrium speciation in loaded solutions from 13C NMR data and gives a very good representation of the solubility of CO2 in the amino acid salt solution as well as the total pressure of the unloaded system at all measured temperatures, loadings and pressures.  相似文献   

13.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

14.
A comparison between the hollow fibre supported gas membrane (SGM) process and the hollow fibre supported liquid membrane (SLM) process for the separation of NH3 from aqueous solutions containing NH3 and CO2 was performed. The experimental data as well as the model simulation demonstrate that the SLM process can remove NH3 from aqueous solutions of NH3 and CO2 at a higher rate than the SGM process when the NH3 loading is low or the ratio of NH3 to CO2 is low. This study suggests that the proper combination of the SGM process and the SLM process can strip NH3 more effectively from aqueous solutions containing NH3 and CO2.  相似文献   

15.
The wetting resistance of poly(vinylidene fluoride) (PVDF) membrane is a critical factor which determines the carbon dioxide (CO2) absorption performance of the gas–liquid membrane contactors. In this study, the composite PVDF–polytetrafluoroethylene (PTFE) hollow fiber membranes were fabricated through dry-jet wet phase-inversion method by dispersing PTFE nanoparticles into PVDF solution and adopting phosphoric acid as nonsolvent additive. Compared with the PVDF membrane, the composite membranes presented higher CO2 absorption flux due to their higher effective surface porosity and surface hydrophobicity. The composite membrane with addition of 5 wt % PTFE in the dope gained the optimum CO2 absorption flux of 9.84 × 10−4 and 2.02 × 10−3 mol m−2 s−1 at an inlet gas (CO2/N2 = 19/81, v/v) flow rate of 100 mL min−1 by using distilled water and aqueous diethanolamine solution, respectively. Moreover, the 5% PTFE membrane showed better long-term stability than the PVDF membrane regardless of different types of absorbent, indicating that polymer blending demonstrates great potential for gas separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47767.  相似文献   

16.
An absorption model has been developed which is able to calculate the simultaneous absorption rates (and corresponding enhancement factors) of two gaseous components into a reactive liquid. In the liquid phase multiple complex parallel reversible reactions may take place. This model, for example, can be used for design and development of gas-treating processes for the selective removal of hydrogen sulphide. Due to the implementation of an additional transformation of the spatial coordinate, the required computational time could be reduced substantially without loss of accuracy. The present model can be incorporated into an overall absorption module for column design and simulation. Experimentally determined simultaneous absorption rates of H2S and CO2 in aqueous solutions of alkanolamines and mixtures of alkanolamines can be predicted satisfactorily well for the conditions where both gases have a mutual interaction on the respective rates. The experiments were carried out in a stirred vessel with a flat surface over a wide range of process conditions.  相似文献   

17.
Literature data on the rates of reaction between CO2 and alkanolamines (MEA, DEA, DIPA, TEA and MDEA) in aqueous solution are discussed. These data induced us to carry out absorption experiments of CO2 into aqueous DEA, DIPA, TEA and MDEA solutions from which the respective rate constantsThe results for DEA and DIPA were analysed by means of a zwitterion-mechanism which was derived from the mechanism originally proposed by Danckwerts [1The reaction rate of CO2 with aqueous TEA and MDEA solutions shows a significant base catalysis effect which is also reported by Donaldson and Nguy  相似文献   

18.
Microporous hollow fiber gas-liquid membrane contactors have a fixed and well-defined gas-liquid interfacial area. The liquid flow through the hollow fiber is laminar, thus the liquid side hydrodynamics are well known. This allows the accurate calculation of the fiber side physical mass transfer coefficient from first principles. Moreover, in the case of gas-liquid membrane contactor, the gas-liquid exposure time can be varied easily and independently without disturbing the gas-liquid interfacial area. These features of the hollow fiber membrane contactor make it very suitable as a gas-liquid model contactor and offer numerous advantages over the conventional model contactors. The applicability and the limitations of this novel model contactor for the determination of physico-chemical properties of non-reactive and reactive gas-liquid systems are investigated in the present work. Absorption of CO2 into water and into aqueous NaOH solutions are chosen as model systems to determine the physico-chemical properties for non-reactive and reactive conditions, respectively. The experimental findings for these systems show that a hollow fiber membrane contactor can be used successfully as a model contactor for the determination of various gas-liquid physico-chemical properties. Moreover, since the membrane contactor facilitates indirect contact between the two phases, the application of hollow fiber model contactor can possibly be extended to liquid-liquid systems and/or heterogeneous catalyzed gas-liquid systems.  相似文献   

19.
The removal of carbon dioxide from industrial gases, e.g. in thermal power stations to meet the discharge limits for CO2 in flue gases, is usually achieved with a reactive absorption technique using aqueous solutions of alkanolamines. From the absorption performance point of view, primary and secondary amines are preferred. However, in case the costs of the solvent regeneration are also taken into account, tertiary amines are much more attractive. In order to combine the specific advantages of tertiary and primary/secondary alkanolamines, both types of solvents are mixed. In this paper, mixtures of monoethanolamine and methyldiethanolamine with piperazine as absorption activator are experimentally compared with respect to CO2 removal performances at 25 °C. The absorption process in a special packed column has also been simulated with the use of published data on reaction kinetics, physicochemical properties (densities, viscosities, diffusivities, Henry coefficients) of the CO2‐amines systems, including experimentally determined hydrodynamic and mass transfer characteristics of the CO2 scrubber.  相似文献   

20.
In this study is presented a general methodology to predict the performance of a continuous near-critical fluid extraction process to remove compounds from aqueous solutions using a hollow fiber membrane contactor. The stabilization of the gas-liquid interface in the membrane porosity and a high surface area to contact both phases represent some of the advantages that hollow fiber contactors offer over conventional contactor devices for the extraction of compounds from liquid feeds.A mathematical model has been developed integrating a resistances-in-series mass transfer system that takes into account boundary layers, membrane porosity and thermodynamic considerations with mass balances of the membrane contactor. Simulation algorithms were easily implemented with low calculation requirements.The system studied in this work is a membrane based extractor of ethanol and acetone from aqueous solutions using near-critical CO2. Predictions of extraction percentages obtained by simulations have been compared to the experimental values reported by Bothun et al. [2003a. Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor. Journal of Supercritical Fluids 25, 119-134]. Simulations of extraction percentage of ethanol and acetone show an average difference of 36.3% and 6.75% with the experimental data, respectively. More accurate predictions of the extraction of acetone could be explained by a better estimation of the transport properties in the aqueous phase that controls the extraction of this solute.When the model was validated, the effect of the configuration and the operating parameters was studied and local mass transfer resistances were evaluated. The proposed approach allows the evaluation of the relevance of membrane hydrophobicity for extraction in solutions under different thermodynamic conditions. This original methodology based on well-known phenomenological equations represents a general approach which could be applied in other processes using membrane contactors with different configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号