首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
This article presents a stochastic multi-objective optimization framework for transmission expansion planning (TEP) with steady state voltage security management, using AC optimal power flow (AC-OPF). The objectives are to minimize the sum of transmission investment costs (ICs), minimize the Expected Operation Cost (EOC), minimize the Expected Load Shedding Cost (ELSC) and maximize the Expected Loading Factor (ELF). The system load uncertainty has been considered and the corresponding scenarios are generated employing the Monte Carlo (MC) simulations. A scenario reduction technique is applied to reduce the number of scenarios. A multi-objective mathematical programming (MMP) is formulated and the ε-constraint method is used to solve the formulated problem. The N  1 contingency analysis is also considered for the proposed TEP problem.The proposed TEP model has been applied to the well-known IEEE 24-bus Reliability Test System. The detailed results of the case study are presented and thoroughly analyzed. The obtained TEP results show the efficiency of the proposed algorithm.  相似文献   

2.
Efficient contingency screening and ranking method has gained importance in modern power systems for its secure operation. This paper proposes two artificial neural networks namely multi-layer feed forward neural network (MFNN) and radial basis function network (RBFN) to realize the online power system static security assessment (PSSSA) module. To assess the severity of the system, two indices have been used, namely active power performance index and voltage performance index, which are computed using Newton–Raphson load flow (NRLF) analysis for variable loading conditions under N  1 line outage contingencies. The proposed MFNN and RBFN models based PSSSA module, are fed with power system operating states, load conditions and N  1 line outage contingencies as input features to train the neural network models, to predict the performance indices for unseen network conditions and rank them in descending order based on performance indices for security assessment. The proposed approaches are tested on standard IEEE 30-bus test system, where the simulation results prove its performance and robustness for power system static security assessment. The comparison of severity obtained by the neural network models and the NRLF analysis in terms of time and accuracy, signifies that the proposed model is quick, accurate and robust for power system static security evaluation for unseen network conditions. Thus, the proposed PSSSA module implemented using MFNN and RBFN models are found to be feasible for online implementation.  相似文献   

3.
This paper demonstrates that appropriate invocation of interruptible loads by the independent system operator (ISO) can aid in relieving transmission congestion in power systems. An auction model is proposed, for an ISO operating in a bilateral contract dominated market, for real-time selection of interruptible load offers while satisfying the congestion management objective. The proposed congestion management scheme using interruptible loads can specifically identify load buses where corrective measures are needed for relieving congestion on a particular transmission corridor. The N  1 contingency criterion has been taken into account to simulate various cases, and hence, examine the effectiveness of the proposed method. It has been shown that the method can assist the ISO to remove the overload from lines in both normal and contingency conditions in an optimal manner.  相似文献   

4.
This paper presents a hybrid power and energy source supplied by a proton exchange membrane fuel cell (PEMFC) as the main power source in an uninterruptible power supply (UPS) system. To prevent the PEMFC from fuel starvation and degradation and realize their seamless linking in the hybrid UPS system, the power and energy are balanced by the battery and/or supercapacitor (SC) as two alternative auxiliary power sources. Based on the modeling and sizing of hybrid power and energy components, the power and energy management strategies and efficiency measurements of four operating modes in UPS system are proposed. To evaluate the proposed strategies, an experimental setup is implemented by a data acquisition system, a PEMFC generating system, and a UPS system including AC/DC rectifier, DC/AC inverter, DC/DC converter, AC/DC recharger and its intelligent control unit. Experimental results with the characteristics of a 300 W self-humidified air-breathing of PEMFC, 3-cell 12 V/5 Ah of batteries, and two 16-cell 120 F/2.7 V of SCs in parallel corroborate the excellent management strategies in the four operating modes of UPS system, which provides the basis for the optimal design of the UPS system with hybrid PEMFC/battery/SC power sources.  相似文献   

5.
As power systems become more complex and heavily loaded, voltage collapse has become one of the most destructive events in modern power systems leading to blackouts in electric utilities worldwide. Voltage collapse is mainly caused by operating power systems at lower stability margins due to a surge in electric power demand. This paper presents an optimal unified power flow controller (UPFC) placement and load shedding coordination approach for voltage collapse prevention in N  K (K = 1, 2 and 3) contingency condition using Hybrid Imperialist Competitive Algorithm-Pattern Search (HICA-PS). ICA is the main optimizer of the proposed algorithm while pattern search is applied to further fine tune the results of the ICA. To show the effectiveness of the proposed approach in preventing voltage collapse in complex power systems, we implemented it on the New-England 39 bus power system. Its performance was also compared to that of some classical optimization techniques. Decrease in load shedding amounts, continuity of energy supply and voltage collapse prevention is the main positive features of the proposed approach.  相似文献   

6.
This paper proposes a model for calculating the total supply capability (TSC) for distribution system considering both feeder and substation transformer contingencies. Existing models and methods for TSC only consider substation transformer contingencies and ignore feeder contingencies. However, the feeder contingencies occur much more frequently than substation transformer contingencies in practice. Moreover, some operation state fail the feeder contingencies N  1 verification even they pass the transformer contingencies N  1 verification. In this paper, a TSC model is firstly proposed in which feeder and transformer N  1 contingencies are fully considered. This model is designed in feeder level, which means the topology of interconnection among feeders is accurately modeled. Secondly, a supplementary model for load balancing is set up for a better load distribution solution on feeders and transformers at TSC loading. Finally, the method is tested in a test distribution system and a real partial distribution network and the results are verified by the traditional N  1 simulation.  相似文献   

7.
Power system operation in the era of post-restructuring faces several challenges: transmission congestion frequently occurs, security is deterred more than in the past, emission reduction is becoming a matter of importance and intermittent renewable power generation resources (RPGR) have been widely promoted. This paper intends to solve these challenges in a multi-objective optimisation framework. The proposed procedure comprises two stages: in the a priori stage, transmission congestion management cost (TCMC) and emission are traded-off via a proposed stochastic augmented ε-constraint technique which yields a set of non-dominated solutions. In the a posteriori stage, a solution is selected by considering power system security. For this purpose, two strategies are proposed: in the first strategy, based on a proposed managerial vision, a combination of data envelopment analysis introduced by Charnes, Cooper, and Rhodes (CCR-DEA), cross-efficiency technique and robustness analysis is deployed to select the most robust super-efficient solution. The advantage of the proposed a posteriori approach is that selecting the final solution is not subjected to assigning weights to the objective functions and/or providing higher-level information. In the second strategy, first the effective scenarios due to outage of transmission components are identified using CCR-DEA and next, each scenarios’ degree of severity (DOS) is obtained using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The sums of the DOS of non-dominated solutions’ effective scenarios are evaluated for final decision making. The proposed approach is applied to IEEE 24 bus test system and the results are analysed.  相似文献   

8.
In order to enhance the fuel economy of hybrid vehicle and increase the mileage of continuation of journey, a fuzzy logic control is utilized to design energy management strategies for fuel cell/battery (FC + B) hybrid vehicle and fuel cell/battery/ultra-capacitor (FC + B + UC) hybrid vehicle. The models of hybrid vehicle for FC + B and FC + B + UC structure are developed by electric vehicle simulation software ADVISOR which uses a hybrid backward/forward approach. The results demonstrate that the proposed control strategy can satisfy the power requirement for four standard driving cycles and achieve the power distribution among various power sources. The comprehensive comparisons with the power tracking control strategy which is wide adopted in ADVISOR verify that the proposed control strategy has better rationality and validity in terms of fuel economy and dynamic property in four standard driving cycles. Therefore, the proposed strategy will provide a novel approach for the advanced energy management system of hybrid vehicle.  相似文献   

9.
分布式电源(DG)大规模并网不仅带来了消纳问题,还使交直流网络的经济安全运行面临巨大挑战。基于此,文中提出一种基于DG选址和多端电压源换流器(VSC)协调控制的交直流混合配电网优化运行方法。针对DG选址,基于灵敏度分析方法提出一种节点网损灵敏度指标,利用网络中不同位置的负荷节点对网损敏感度不同的规律进行交流网侧的DG选址。进而建立以网络有功总损耗、节点电压偏移量和DG盈余量最小为目标的多目标优化模型,对多端VSC不同控制策略下的端口功率电压变量和DG的有功出力进行协调控制。仿真结果表明,所提优化运行方法能够提高网络运行经济性和安全性,并兼顾配电网对DG的消纳水平,为实际工程中的决策人员提供重要的参考。  相似文献   

10.
分析了多端直流输电系统和多馈入直流输电系统控制运行方式,提出了采用计算机进行控制方式转换的方法。在考虑各种控制方式的控制作用和转换条件的基础上计算交直流系统潮流。该方法用加入2条直流输电线路的IEEE 300节点算例系统和加入三端直流输电系统的IEEE 118节点算例系统进行测试,计算效果较好,能够处理运行条件改变导致的运行方式发生的转换。  相似文献   

11.
Multi terminal VSC-HVDC systems are a promising solution to the problem of connecting offshore wind farms to AC grids. Optimal power sharing and appropriate control of DC-link voltages are essential and must be maintained during the operation of VSC-MTDC systems, particularly in post-contingency conditions. The traditional droop control methods cannot satisfy these requirements, and accordingly, this paper proposes a novel centralized control strategy based on a look-up table to ensure optimal power sharing and minimum DC voltage deviation immediately during post-contingency conditions by considering converter limits. It also reduces destructive effects (e.g., frequency deviation) on onshore AC grids and guarantees the stable operation of the entire MTDC system. The proposed look-up table is an array of data that relates operating conditions to optimal droop coefficients and is determined according to N-1 contingency analysis and a linearized system model. Stability constraints and contingencies such as wind power changes, converter outage, and DC line disconnection are considered in its formation procedure. Simulations performed on a 4-terminal VSC-MTDC system in the MATLAB-Simulink environment validate the effectiveness and superiority of the proposed control strategy.  相似文献   

12.
This paper examines how applicable approximate Jacobian inversions are when implemented in the security analysis simulations of 132 kV power subtransmission. The complete Scottish 400/275/132 kV power transmission network was simulated, including the 132 kV subtransmission network with its high r/x ratios. Both the coupled and decoupled Maclaurin–Newton load flow algorithms were tested. It was proved that high r/x ratios found in the 132 kV level, five times higher than in 400/275 kV, have an important influence on convergence and accuracy of the inversion Jacobian load flow algorithms. It was found that the decoupled inversion load flow was applicable for 132 kV, it converged regularly, but had worse convergence and accuracy characteristics, compared to 400/275 kV applications, while the coupled inversion load flow was not applicable at all for 132 kV, it always diverged.  相似文献   

13.
含电压源换流器的多端直流系统在工作原理及控制方式上与常规直流系统存在本质区别,现有静态安全分析无法直接对含多端柔性直流的交直流系统分析计算。文中以传统交流电网静态安全分析为基础,首先,提出了多端柔性直流混联系统的交直流静态安全分析计算框架,阐述了功能实现方法及采用的关键技术。然后,在预想故障计算中考虑了交直流电网运行条件变化情况,保证计算结果与实际电网运行状态一致,提高了静态安全分析计算的准确性。最后,通过构建含四端柔性直流的交直流混联系统仿真模型,验证了算法的有效性和实用性。  相似文献   

14.
由于基于电压源型换流器的高压直流(VSC-HVDC)输电技术具有良好的可控性,对负荷中心供电、风电消纳、孤岛电力传输等适应能力强,电压稳定性好,因此具有良好的应用前景。当前对VSC-HVDC系统主要基于定功率控制模式进行潮流计算,而很少考虑到实际的换流器电压控制能力。为了更加精确地反映实际电网中VSC的电压控制特性,文中建立了基于VSC的电压控制模型,考虑了换流器损耗、交流滤波器、换流器容量限制等的影响,并基于电压控制特性提出了VSC多端直流/交流系统的通用潮流求解方法。对直流电网功率分布变化和N-1故障以及多端直流/交流系统的潮流算例分析表明,所提的潮流算法能够反映直流换流器的电压控制调节能力,验证了基于VSC的多端直流/交流系统在考虑换流器电压控制特性后的潮流方法的有效性、合理性以及算法的快速性。  相似文献   

15.
This paper presents an intelligent DC link control using a fuzzy logic controller based on the differential flatness control theory for hybrid vehicle applications supplied by a fuel cell (FC) (main source) and a supercapacitor (auxiliary source). The energy in the system is balanced by dc bus energy stabilization (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the dc bus energy. The FC, as a slow dynamic source in this system, supplies energy to the supercapacitor module to maintain its charge. The FC converter combines four-phase parallel boost converters with interleaving, and the supercapacitor converter employs four-phase parallel bidirectional converters with interleaving. These two converters are called a multi-segment converter for high power applications. Because the model of the power switching converters is nonlinear, it is preferable to apply model-based nonlinear control strategies that directly compensate for the nonlinearity of the system without requiring a linear approximation. Using the intelligent fuzzy control law based on the flatness property, we propose straightforward solutions to hybrid energy management and to the dynamic and regulation problems. To validate the proposed method, a hardware system is developed with analogue circuits, and a numerical calculation is generated with a dSPACE controller DS1104. Experimental results for a small-scale power plant (a polymer electrolyte membrane FC (PEMFC) of 1200 W and 46 A with a supercapacitor module of 100 F, 500 A, and 32 V) in the laboratory corroborate the excellent performance of this control scheme during vehicle motor drive cycles.  相似文献   

16.
This paper investigates the Sustainable Saturation Operation (SSO) of Ferrite Core Power Inductors (FCPIs) in Switch Mode Power Supplies (SMPSs). A ferrite inductor is considered in SSO if its current ripple, power losses and temperature rise are acceptable and reliable for both the device and the SMPS, despite the inductance drop determined by the core saturation. An algorithm is discussed, which identifies SSO-compliant FCPIs with minimum size and volume, given the SMPS specifications about the allowed power losses, temperature rise and peak-to-peak current ripple of the inductor. The experimental results relevant to a 465 kHz/3.3 V/1.5 A buck converter show that SSO-compliant inductors allow to increase the SMPS power density, while preserving the overall converter efficiency. Despite the proposed low power application, the findings relevant to the utilization of power inductors in partial saturation have general conceptual valence and similar investigations can be prospectively re-assessed for few kW output power DC/DC converters.  相似文献   

17.
Excessive carbon emissions from the current transportation sector has encouraged the growth of electric vehicles. Despite the environmental and economical benefits electric vehicles charging will introduce negative impacts on the existing network operation. This paper examines the voltage impact due to electric vehicle fast charging in low voltage distribution network during the peak load condition. Simulation results show that fast charging of only six electric vehicles have driven the network to go beyond the safe operational voltage level. Therefore, a bi-directional DC fast charging station with novel control topology is proposed to solve the voltage drop problem. The switching of power converter modules of DC fast charging station are controlled to fast charge the electric vehicles with new constant current/reduced constant current approach. The control topology maintains the DC-link voltage at 800 V and provides reactive power compensation to regulate the network bus voltage at the steady-state voltage or rated voltage (one per unit). The reactive power compensation is realized by simple direct-voltage control, which is capable of supplying sufficient reactive power to grid in situations where the electric vehicle is charging or electric vehicle is not receiving charges.  相似文献   

18.
Low-concentration photovoltaic (LCPV) system has huge potential for further cost reduction of solar photovoltaic (PV) power as compared to flat panel PV. The dependence of steady state and dynamic parameters on concentration and temperature is crucial to extract maximum power from solar photovoltaic system. This article aims to present the effect of varying concentration and temperature on steady state and dynamic parameters of LCPV system under actual test conditions (ATC). The rate of change in ISC with solar irradiation i.e., dISC/dG is found as 0.25 A/W assuming ≈±1 °C change in module temperature. The effect of temperature on inherent material properties responsible for photo-conversion efficiency is studied using impedance spectroscopy technique. A linear response of series resistance of LCPV module is observed with respect to change in module temperature, i.e. dRS/dT from 297 to 333 K is in the range of 1.15–1.20 Ω with a rate of 1 mΩ/K. From real-time analysis of LCPV system open-circuit voltage found decreasing from 21 to 20.6 V with temperature coefficient of voltage ≈−0.061 V/K. The dynamic resistance has a positive coefficient of module temperature i.e., drd/dT given by 0.49 Ω/K.  相似文献   

19.
In this paper three new control modules are introduced for offshore wind power plants with VSC-HVDC transmission. The goal is to enhance the Fault Ride Thought (FRT) capability of the HVDC system and the connected offshore wind power plant during balanced and unbalanced AC faults. Firstly, a positive-sequence-voltage-dependent (PSVD) active current reduction control loop is introduced to the offshore wind turbines. The method enhances the performance of the offshore AC voltage drop FRT compliance strategy. Secondly, an adaptive current limiting control strategy which operates simultaneously on the positive and the negative sequence current is discussed. It enables negative sequence current injection, while at the same time respecting the maximum fault current capacity of the HVDC converter station. Finally, a state machine is proposed for the VSC-HVDC system and for the offshore wind turbines respectively. It coordinates the fault and the post-fault response during balanced as well as unbalanced faults, ensuring a smooth shift from the normal operating point towards the fault and the post-fault period. The test system consists of a two level VSC-HVDC link, rated at ±250 kV, connecting an offshore wind power plant with 700 MW generation capacity. Simulation results with a detailed EMT type model in PSCAD/EMTDC environment are presented.  相似文献   

20.
Yaw control systems orientate the rotor of a wind turbine into the wind direction, optimize the wind power generated by wind turbines and alleviate the mechanical stresses on a wind turbine. Regarding the advantages of yaw control systems, a k-nearest neighbor classifier (k-NN) has been developed in order to forecast the yaw position parameter at 10-min intervals in this study. Air temperature, atmosphere pressure, wind direction, wind speed, rotor speed and wind power parameters are used in 2, 3, 4, 5 and 6-dimensional input spaces. The forecasting model using Manhattan distance metric for k = 3 uncovered the most accurate performance for atmosphere pressure, wind direction, wind speed and rotor speed inputs. However, the forecasting model using Euclidean distance metric for k = 1 brought out the most inconsistent results for atmosphere pressure and wind speed inputs. As a result of multi-tupled analyses, many feasible inferences were achieved for yaw position control systems. In addition, the yaw position forecasting model developed was compared with the persistence model and it surpassed the persistence model significantly in terms of the improvement percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号