首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
What are the feasibility, costs, and environmental implications of large-scale bioenegry? We investigate this question by developing a detailed representation of bioenergy in a global economy-wide model. We develop a scenario with a global carbon dioxide price, applied to all anthropogenic emissions except those from land use change, that rises from $25 per metric ton in 2015 to $99 in 2050. This creates market conditions favorable to biomass energy, resulting in global non-traditional bioenergy production of ~ 150 exajoules (EJ) in 2050. By comparison, in 2010, global energy production was primarily from coal (138 EJ), oil (171 EJ), and gas (106 EJ). With this policy, 2050 emissions are 42% less in our Base Policy case than our Reference case, although extending the scope of the carbon price to include emissions from land use change would reduce 2050 emissions by 52% relative to the same baseline. Our results from various policy scenarios show that lignocellulosic (LC) ethanol may become the major form of bioenergy, if its production costs fall by amounts predicted in a recent survey and ethanol blending constraints disappear by 2030; however, if its costs remain higher than expected or the ethanol blend wall continues to bind, bioelectricity and bioheat may prevail. Higher LC ethanol costs may also result in the expanded production of first-generation biofuels (ethanol from sugarcane and corn) so that they remain in the fuel mix through 2050. Deforestation occurs if emissions from land use change are not priced, although the availability of biomass residues and improvements in crop yields and conversion efficiencies mitigate pressure on land markets. As regions are linked via international agricultural markets, irrespective of the location of bioenergy production, natural forest decreases are largest in regions with the lowest barriers to deforestation. In 2050, the combination of carbon price and bioenergy production increases food prices by 3.2%–5.2%, with bioenergy accounting for 1.3%–3.5%.  相似文献   

2.
The hikes in hydrocarbon prices during the last years have lead to concern about investment choices in the energy system and uncertainty about the costs for mitigation of greenhouse gas emissions. On the one hand, high prices of oil and natural gas increase the use of coal; on the other hand, the cost difference between fossil-based energy and non-carbon energy options decreases. We use the global energy model TIMER to explore the energy system impacts of exogenously forced low, medium and high hydrocarbon price scenarios, with and without climate policy. We find that without climate policy high hydrocarbon prices drive electricity production from natural gas to coal. In the transport sector, high hydrocarbon prices lead to the introduction of alternative fuels, especially biofuels and coal-based hydrogen. This leads to increased emissions of CO2. With climate policy, high hydrocarbon prices cause a shift in electricity production from a dominant position of natural gas with carbon capture and sequestration (CCS) to coal-with-CCS, nuclear and wind. In the transport sector, the introduction of hydrogen opens up the possibility of CCS, leading to a higher mitigation potential at the same costs. In a more dynamic simulation of carbon price and oil price interaction the effects might be dampened somewhat.  相似文献   

3.
This research examines in detail the technology and economics of substituting biodiesel for diesel #2. This endeavor examines three areas. First, the benefits of biodiesel are examined, and the technical problems of large-scale implementation. Second, the biodiesel production possibilities are examined for soybean oil, corn oil, tallow, and yellow grease, which are the largest sources of feedstocks for the United States. Examining in detail the production possibilities allows to identity the extent of technological change, production costs, byproducts, and greenhouse gas (GHG) emissions. Finally, a U.S. agricultural model, FASOMGHG was used to predict market penetration of biodiesel, given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and carbon dioxide equivalent prices.FASOMGHG has several interesting results. First, diesel fuel prices have an expansionary impact on the biodiesel industry. The higher the diesel fuel prices, the more biodiesel is produced. However, given the most favorable circumstances, the maximum biodiesel market penetration is 9% in 2030 with a wholesale diesel price of $4 per gallon. Second, the two dominant sources of biodiesel are from corn and soybeans. Sources like tallow and yellow grease are more limited, because they are byproducts of other industries. Third, GHG prices have an expansionary impact on the biodiesel prices, because biodiesel is quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on biodiesel production, and increase market penetration at least an additional 3%.  相似文献   

4.
Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N2O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well.Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems have higher eutrophication potential than fossil reference systems. Based on these results, a residues-based biorefinery concept is able to solve two problems at the same time, namely find a use for the abundant lignocellulosic residues and ensure a mitigation effect for most of the environmental concerns related to the utilization of non-renewable energy resources.Therefore, when agricultural residues are used as feedstocks, best management practices and harvest rates need to be carefully established. In fact, rotation, tillage, fertilization management, soil properties and climate can play an important role in the determination of the amount of crop residue that can be removed minimizing soil carbon losses.  相似文献   

5.
The rapid growth of vehicles has resulted in continuing growth in China’s oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China’s road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.  相似文献   

6.
There are several policy drivers for biofuels on a larger scale in the EU transport sector, including increased security of energy supply, reduced emission of greenhouse gases (GHG), and new markets for the agricultural sector. The purpose of this socio-economic cost analysis is to provide an overview of the costs of meeting EU biofuels targets, taking into account several external costs and benefits. Biofuels are generally more expensive than traditional fossil fuels, but the expected increasing value of GHG emission reductions will over time reduce the cost gap. High crude oil prices significantly improve the economic benefit of biofuels, but increased demand for biomass for energy purposes is likely to increase the price of biofuels feedstock and biofuels costs. The key question is to what extent increasing oil prices will be passed on to biofuels costs. Socio-economic least costs for biofuels production require a market with a clear pricing of GHG emissions to ensure that this factor is included in the decision-making of actors in all links of the fuel chain.  相似文献   

7.
This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices.FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers’ income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons.  相似文献   

8.
《Energy Policy》2006,34(17):3245-3256
Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5–1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency—especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand ε.Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining.When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO2 emissions far higher than standard business as usual projections utilizing AEEI assumptions.  相似文献   

9.
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize, like industry and transportation. At the same time, flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work, we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050, we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis, while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally, the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2, due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.  相似文献   

10.
This paper analyzes the implications of the natural gas revolution on the US’ ability to achieve deep GHG emissions reductions of 80% below 2005 levels by 2050. It uses a hybrid energy-economy model to test how prevailing low US natural gas prices influence the magnitude of the required carbon price needed to achieve this target. While the paper finds in general that lower gas prices resulting from plentiful gas necessitate a higher carbon price to achieve this target, informing firms and consumers in advance about the magnitude of the future carbon price can lower the necessary level.  相似文献   

11.
Large scale, low cost, and low carbon intensity hydrogen production is needed to reduce emissions in the energy and transportation sectors. We present a techno-economic analysis and life cycle assessment of natural gas pyrolysis technologies for hydrogen production, with carbon black (CB) as a co-product. Four designs were considered based on the source of heat to the pyrolysis system, the combustion medium, and use of carbon capture (CC) technology. The oxygen-fired-CB design with CC is the most attractive from financial and environmental perspectives, superior to a conventional steam methane reformer (SMR) process with CC. The estimated pre-tax minimum hydrogen selling prices for the pyrolysis technologies range between $1.08/kg and $2.43/kg when natural gas (NG) costs $3.76/GJ. Key advantages include near-zero onsite GHG emissions of the oxygen-fired-CB design with CC and up to 41% lower GHG emissions compared to the SMR + CC process. The results indicate that natural gas pyrolysis may be a feasible pathway for hydrogen production.  相似文献   

12.
This paper investigates demand response to crude oil price movements before and after the recent global financial and economic crisis. It employs several market power indices to structurally estimate price elasticities. A newly developed market power index for crude oil markets is implemented. In this approach OPEC is the central player and acts as a dominant producer in the global oil market. We quantify how a change in market structure (such as changes in marginal cost of production) would contribute to market power exercise of OPEC and have an ultimate impact on price elasticity of demand for oil. Our price elasticity predictions fall in a range reported in the literature, however estimates for pre-crisis deviate from the post-crisis ones. In fact, demand response to crude oil prices has almost doubled during the crisis. This severe change in price response can be associated with record price levels caused by supply shortages and surge in alternative renewable energy resources. The key advantages of this methodology over the existing literature are that it is simple to use and estimates price elasticity using a competition framework without specifying demand/supply function(s), and utilizes commonly observable market variables that can be applied to any admissible data frequency.  相似文献   

13.
Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages—material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO2-eq). Primary energy demand, petroleum demand and GHG emissions in China’s passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.  相似文献   

14.
The potential for a 10 MW photovoltaic power plant in Abu Dhabi is examined in this paper using RETScreen modeling software to predict energy production, financial feasibility and GHG emissions reductions. Initial results show high energy production potential, generating 24 GWh and saving over 10,000 tons of GHG emissions annually, but poor financial prospects yielding a net present value (NPV) of ?$51 million. Benefits of reducing GHG and air pollution emissions by replacing natural gas with PV generation are calculated to have a net present value of $47 million, with a large range of possible values. Results show that the high initial costs and low expected price for electricity generated are driving reasons why photovoltaic systems are not being implemented in Abu Dhabi. A feed-in tariff rate of $0.16/kWh is recommended to make large-scale PV systems profitable.  相似文献   

15.
We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies.  相似文献   

16.
Definitions of fossil fuel reserves and resources and assessed stock data are reviewed and clarified. Semantics explain a large stake of conflict between advocate and critical voices on peak oil. From a holistic sources–sinks perspective, limited carrying capacity of atmospheric sinks, not absolute scarcity in oil resources, will impose tight constraints on oil use. Eventually observed peaks in oil production in nearby years will result from politically imposed limits on carbon emissions, and not be caused by physical lack of oil resources. Peak-oil belief induces passive climate policy attitudes when suggesting carbon dioxide emissions will peak naturally linked to dwindling oil supplies. Active policies for reducing emissions and use of fossil fuels will also encompass higher energy end-use prices. Revenues obtained from higher levies on oil use can support financing energy efficiency and renewable energy options. But when oil producers charge the higher prices they can pump new oil for many decades, postponing peak oil to occur while extending carbon lock-in.  相似文献   

17.
《Biomass & bioenergy》2007,31(1):46-65
This study evaluates the possible influences of a large-scale introduction of biomass material and energy systems and their market volumes on land, material and energy market prices and their feedback to greenhouse gas (GHG) emission mitigation costs. GHG emission mitigation supply curves for large-scale biomass use were compiled using a methodology that combines a bottom-up analysis of biomass applications, biomass cost supply curves and market prices of land, biomaterials and bioenergy carriers. These market prices depend on the scale of biomass use and the market volume of materials and energy carriers and were estimated using own-price elasticities of demand. The methodology was demonstrated for a case study of Poland in the year 2015 applying different scenarios on economic development and trade in Europe. For the key technologies considered, i.e. medium density fibreboard, poly lactic acid, electricity and methanol production, GHG emission mitigation costs increase strongly with the scale of biomass production. Large-scale introduction of biomass use decreases the GHG emission reduction potential at costs below 50 €/Mg CO2eq with about 13–70% depending on the scenario. Biomaterial production accounts for only a small part of this GHG emission reduction potential due to relatively small material markets and the subsequent strong decrease of biomaterial market prices at large scale of production. GHG emission mitigation costs depend strongly on biomass supply curves, own-price elasticity of land and market volumes of bioenergy carriers. The analysis shows that these influences should be taken into account for developing biomass implementations strategies.  相似文献   

18.
The CA-TIMES optimization model of the California Energy System (v1.5) is used to understand how California can meet the 2050 targets for greenhouse gas (GHG) emissions (80% below 1990 levels). This model represents energy supply and demand sectors in California and simulates the technology and resource requirements needed to meet projected energy service demands. The model includes assumptions on policy constraints, as well as technology and resource costs and availability. Multiple scenarios are developed to analyze the changes and investments in low-carbon electricity generation, alternative fuels and advanced vehicles in transportation, resource utilization, and efficiency improvements across many sectors. Results show that major energy transformations are needed but that achieving the 80% reduction goal for California is possible at reasonable average carbon reduction cost ($9 to $124/tonne CO2e at 4% discount rate) relative to a baseline scenario. Availability of low-carbon resources such as nuclear power, carbon capture and sequestration (CCS), biofuels, wind and solar generation, and demand reduction all serve to lower the mitigation costs, but CCS is a key technology for achieving the lowest mitigation costs.  相似文献   

19.
Performance-based low carbon fuel standards (LCFS) of the type implemented in California and being adopted in the European Union, are a promising policy approach for decarbonizing transport fuels and reducing fossil fuel use. This paper examines the efficacy of LCFS policies, along with four major challenges that threaten their effectiveness. These challenges include leakage and shuffling of greenhouse gas (GHG) emissions, impacts on energy security, increased GHG emissions due to global land use conversion (indirect land use changes), and sustainability issues associated with biofuel production. We identify complementary policies that mitigate the severity of these challenges, while noting that some of these challenges are inherent to carbon and alternative fuel policies.  相似文献   

20.
This study analyzes the potential impacts of changes in temperature due to climate change on the U.S. power sector, measuring the energy, environmental, and economic impacts of power system changes due to temperature changes under two emissions trajectories—with and without emissions mitigation. It estimates the impact of temperature change on heating and cooling degree days, electricity demand, and generating unit output and efficiency. These effects are then integrated into a dispatch and capacity planning model to estimate impacts on investment decisions, emissions, system costs, and power prices for 32 U.S. regions. Without mitigation actions, total annual electricity production costs in 2050 are projected to increase 14% ($51 billion) because of greater cooling demand as compared to a control scenario without future temperature changes. For a scenario with global emissions mitigation, including a reduction in U.S. power sector emissions of 36% below 2005 levels in 2050, the increase in total annual electricity production costs is approximately the same as the increase in system costs to satisfy the increased demand associated with unmitigated rising temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号