首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sm0.2(Ce1−xTix)0.8O1.9 (SCTx, x = 0-0.29) modified Ni-yttria-stabilized zirconia (YSZ) has been fabricated and evaluated as anode in solid oxide fuel cells for direct utilization of methane fuel. It has been found that both the amount of Ti-doping and the SCTx loading level in the anode have substantial effect on the electrochemical activity for methane oxidation. Optimal anode performance for methane oxidation has been obtained for Sm0.2(Ce0.83Ti0.17)0.8O1.9 (SCT0.17) modified Ni-YSZ anode with SCT0.17 loading of about 241 mg cm−2 resulted from four repeated impregnation cycles. When operating on humidified methane as fuel and ambient air as oxidant at 700 °C, single cells with the configuration of SCT0.17 modified Ni-YSZ anode, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-Sm0.2Ce0.8O1.9 (LSCF-SDC) composite cathode show the polarization cell resistance of 0.63 Ω cm2 under open circuit conditions and produce a peak power density of 383 mW cm−2. It has been revealed that the coated Ti-doped SDC on Ni-YSZ anode not only effectively prevents the methane fuel from directly impacting on the Ni particles, but also enhances the kinetics of methane oxidation due to an improved oxygen storage capacity (OSC) and redox equilibrium of the anode surface, resulting in significant enhancement of the SCTx modified Ni-YSZ anode for direct methane oxidation.  相似文献   

2.
Various Ni–LaxCe1−xOy composites were synthesized and their catalytic activity, catalytic stability and carbon deposition properties for steam reforming of methane were investigated. Among the catalysts, Ni–La0.1Ce0.9Oy showed the highest catalytic performance and also the best coking resistance. The Ni–LaxCe1−xOy catalysts with a higher Ni content were further sintered at 1400 °C and investigated as anodes of solid oxide fuel cells for operating on methane fuel. The Ni–La0.1Ce0.9Oy anode presented the best catalytic activity and coking resistance in the various Ni–LaxCe1−xOy catalysts with different ceria contents. In addition, the Ni–La0.1Ce0.9Oy also showed improved coking resistance over a Ni–SDC cermet anode due to its improved surface acidity. A fuel cell with a Ni–La0.1Ce0.9Oy anode and a catalyst yielded a peak power density of 850 mW cm−2 at 650 °C while operating on a CH4–H2O gas mixture, which was only slightly lower than that obtained while operating on hydrogen fuel. No obvious carbon deposition or nickel aggregation was observed on the Ni–La0.1Ce0.9Oy anode after the operation on methane. Such remarkable performances suggest that nickel and La-doped CeO2 composites are attractive anodes for direct hydrocarbon SOFCs and might also be used as catalysts for the steam reforming of hydrocarbons.  相似文献   

3.
Biogas reforming for hydrogen production over mesoporous Ni2xCe1−xO2 catalysts were proposed in this study. Mesoporous Ni2xCe1−xO2 (x = 0.05, 0.13, 0.2) was prepared by a reverse precipitation method. The effects of nickel content were investigated in physicochemical properties and catalytic activities. All of the catalysts were reduced with 10% H2/Ar at 600 °C before reactions, the reduced catalysts were found to be active for both dry and steam reforming of methane (CH4:CO2:H2O = 3:1:2) to produce hydrogen and syngas. The studies were firstly carried out by temperature program reaction from 400 °C to 900 °C to verify the activity of temperature dependency. The long-term stability analysis was also studied at 700 °C for 24 h. Commercial catalyst (R67) was also employed for a comparative purpose.  相似文献   

4.
Preparation and performance of bimetallic Ni(1−x)Cox-YSZ and Ni(1−x)Cux-YSZ anodes were tested to overcome common deficiencies of carbon and sulfur poisoning in SOFCs. Ni1−xCoxO-YSZ and Ni(1−x)CuxO-YSZ precursors were synthesized via co-precipitation of their respective chlorides. Single cell solid oxide fuel cells of these bimetallic anodes were tested in H2, CH4, and H2S/CH4 fuel mixtures. Addition of Cu2+ into the NiO lattice resulted in large metal particle sizes and decreased SOFC performance. Addition of Co2+ into the NiO lattice to form Ni0.92Co0.08O-YSZ anode precursor produced a cermet with a large BET surface area and active metal surface area, thus increasing the rate of hydrogen oxidation for this sample. The performance of both bimetallics was found to quickly degrade in dry CH4 due to carbon deposition and lifting of the anode from the electrolyte. However, Ni0.69Co0.31-YSZ showed superior activity in a 10% (v/v) H2S/CH4 fuel mixture, surpassing performance with H2 fuel, thereby demonstrating the exciting prospect of using sulfidated Ni(1−x)Cox-YSZ as SOFC anodes in sulfur containing methane streams. The active anode becomes a sulfidated alloy (Ni-Co-S) under operating conditions. This anode showed enhanced performance, which surpassed those of sulfidated Ni and Co anodes, thereby suggesting a synergistic behaviour in the Ni-Co-S anode.  相似文献   

5.
BaZr0.1Ce0.7Y0.2O3−δ (BZCY)-based proton-conducting solid oxide fuel cells (H-SOFC) with a cobalt-free proton-blocking La0.7Sr0.3FeO3−δ-Ce0.8Sm0.2O2-δ (LSF-SDC) composite cathode were fabricated and evaluated. The effect of firing temperature of the cathode layer on the chemical compatibility, microstructure of the cathode and cathode-electrolyte interface, as well as electrochemical performance of single cells was investigated in detail. The results indicated that the cell exhibited the most desirable performance when the cathode was fired at 1000 °C; moreover, at the same firing temperature, the power performance had the least temperature dependence. With humidified hydrogen (∼2% H2O) as the fuel and ambient air as the oxidant, the polarization resistance of the cell with LSF-SDC cathode fired at 1000 °C for 3 h was as low as 0.074 Ω cm2 at 650 °C after optimizing microstructures of the anode and anode-electrolyte interface, and correspondingly the maximum power density achieved as high as 542 mW cm−2, which was the highest power output ever reported for BZCY-based H-SOFC with a cobalt-free cathode at 650 °C.  相似文献   

6.
LaFeyNi1−yO3 perovskite-type oxide supported highly dispersed NiO catalysts were prepared by one-step citric-complexing method, and applied to the steam reforming of ethanol for hydrogen production. NiO/LaFeO3 prepared by impregnation was also presented for comparison. The XRD and TEM results indicate that one-step citric-complexing method is a simple as well as an effective way for producing well-dispersed NiO particles supported on perovskite oxides. The dispersive NiO particles tend to interact with the perovskite oxide and partially incorporate into the perovskite structure, leading to the formation of LaFeyNi1−yO3 and some resultantly separated Fe ions onto the perovskite surface. The smaller the NiO particles are, the easier the incorporation is. The catalystic performance tests showed that the high activities of NiO/LaFeyNi1−yO3 were attributed to the metallic Ni with high dispersion. The CH4 selectivity was sensitive to the particle sizes of supported Ni, and the smaller nickel particles favor the lower amount of methane formed. Characterizations of used catalysts indicated that the sintering of nickel particles was not significant even at the high reaction temperature. The LaFeyNi1−yO3 supported nickel catalysts exhibited very good carbon deposition resistance, which could be ascribed to the highly dispersed Ni particles and the formation of oxygen vacancies in LaFeyNi1−yO3 due to the partial substitution of Ni ions for Fe ions.  相似文献   

7.
K2NiF4-type structure oxides La2Cu1−xCoxO4 (x = 0.1, 0.2, 0.3) are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The materials are characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. The results show that no reaction occurs between La2Cu1−xCoxO4 electrode and Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrode forms good contact with the electrolyte after sintering at 800 °C for 4 h in air. The electrode properties of La2Cu1−xCoxO4 are studied under various temperatures and oxygen partial pressures. The optimum composition of La2Cu0.8Co0.2O4 results in 0.51 Ω cm2 polarization resistance (Rp) at 700 °C in air. The rate limiting step for oxygen reduction reaction (ORR) is the charge transfer process. La2Cu0.8Co0.2O4 cathode exhibits the lowest overpotential of about 50 mV at a current density of 48 mA cm−2 at 700 °C in air.  相似文献   

8.
In this study, the physical properties of the Sr1−xPrxCo0.95Sn0.05O3−δ ceramics were measured and their potential for use as a cathode material of intermediate-temperature solid oxide fuel cells (IT-SOFCs) was evaluated. A cubic phase was retained in all of the Sr1−xPrxCo0.95Sn0.05O3−δ ceramics. Analysis of the temperature-dependent conductivity found the SrCo0.95Sn0.05O3−δ and Sr0.9Pr0.1Co0.95Sn0.05O3−δ ceramics exhibiting semiconductor-like behavior below 550 °C and metal-like behavior above the same temperature. The Sr0.8Pr0.2Co0.95Sn0.05O3−δ and Sr0.7Pr0.3Co0.95Sn0.05O3−δ ceramics, however, reported a metal-like conductivity in the whole temperature range. The electrical conductivities of the Sr0.8Pr0.2Co0.95Sn0.05O3−δ ceramic at 500 °C and 700 °C read respectively 1250 S/cm and 680 S/cm, both of which were superior than those in most of the common perovskites. Single cells with a structure of NiO–Sm0.2Ce0.8O2−δ (SDC)/SDC/Sr0.8Pr0.2Co0.95Sn0.05O3−δ-SDC were built and characterized. Addition of SDC in Sr0.8Pr0.2Co0.95Sn0.05O3−δ emerged to be a crucial factor reducing the ohmic resistance (R0) and polarization resistance (RP) of the cell by facilitating a better adhesion to and electrical contact with the electrolyte layer. The R0 and RP of the cell read respectively 0.068 Ω cm2 and 0.0571 Ω cm2 at 700 °C and 0.298 Ω cm2 and 1.310 Ω cm2 at 550 °C. With no microstructure optimization and hermetic sealing of the cells, maximum power density (MPD) and open circuit voltage (OCV) reached respectively 0.872 W/cm2 and 0.77 V at 700 °C and 0.482 W/cm2 and 0.86 V at 550 °C. It is evident that Sr1−xPrxCo0.95Sn0.05O3−δ is a promising cathode material for IT-SOFCs.  相似文献   

9.
A high-performance solid oxide fuel cell La1−xSrxMnO3 (LSM) cathode/metallic interconnect contact material Ni1−xCoxO, added with the mixed ionic-electronic conducting Sm0.2Ce0.8O2−δ (SDC), was proposed as a novel composite cathode for proton-conducting solid oxide fuel cells (H-SOFCs) with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) as the electrolyte. The X-ray diffraction (XRD) results indicated that the maximum doped ratio of Ni1−xCoxO was Ni0.7Co0.3O (NC3O), also shown that NC3O was chemically compatible with SDC at temperatures up to 1400 °C. The TEC of NC3O was also measured to check its thermal compatibility with other components. Laboratory-sized tri-layer cells of NiO–BZCYYb/BZCYYb/NC3O-SDC were fabricated and tested with humidified hydrogen (∼3% H2O) as fuel and static air as oxidant, respectively. A maximum power density of 204 mW cm−2 and a low interfacial polarization resistance Rp of 0.683 Ω cm2 were achieved at 700 °C. The results have indicated that the NC3O-SDC composite is a simple, stable and cost-effective cathode material for H-SOFCs.  相似文献   

10.
The Ce1−x(Gd0.5Pr0.5)xO2 (x = 0–0.24) compositions were synthesized through the sol–gel process followed by low temperature combustion. X-ray diffraction data analysis showed that all the samples exhibit a cubic structure with single phase. The lattice parameter was calculated by rietveld refinement of XRD patterns. Dense ceramics were prepared by sintering the pellets at 1300 °C. The relative density of the samples was over 98%. The surface morphology was studied by Scanning electron microscopy (SEM). Chemical composition was analyzed by Energy dispersive spectroscopy (EDX). A.C. impedance spectroscopy measurements were carried out to study the grain, grain boundary and total ionic conductivity of co-doped ceria samples in the temperature range 150–700 °C. The Ce0.84(Gd0.5Pr0.5)0.16O2 composition showed highest grain ionic conductivity i.e., 1.059 × 10−2 S/cm at 500 °C which is 11.5% higher than the Ce0.9Gd0.1O2 (with an activation energy 0.62 eV). At intermediate temperatures, the Ce1−x(Gd0.5Pr0.5)xO2 materials were found to be ionic in nature.  相似文献   

11.
Iron doped layered structured perovskites, PrBaCo2−xFexO5+δ (x = 0, 0.5, 1.0, 1.5 and 2.0), are evaluated as cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The effects of dopant content are investigated on their structural and electrochemical properties including crystalline structure, oxygen nonstoichiometry, stability in presence of CO2, compatibility with electrolytes, thermal expansion coefficient, electrical conductivity, and cathodic interfacial polarization resistance. The lattice parameter and oxygen nonstoichiometry content, δ, at room temperature increase, whereas the conductivity, thermal expansion coefficient, and cathodic performance decrease with increasing iron content, x. PrBaCo2−xFexO5+δ exhibit excellent stability at 700 °C in atmosphere consisting of 3% CO2 and 97% air, show good chemical compatibility with doped ceria electrolytes at 1000 °C, but react readily with yttria-stabilized zirconia at 700 °C. Even with a Co-free PrBaFe2O5+δ as the electrode, a symmetrical cell demonstrates area specific resistance of 0.18 Ω cm2 at 700 °C with samaria-doped ceria electrolyte. The resistance is lower than those for typical Co-free electrodes reported in the literatures, suggesting that PrBaCo2−xFexO5+δ are potential promising cathode materials for IT-SOFCs.  相似文献   

12.
The high-temperature cubic phase of SrCoO3−δ is a promising cathode material for solid oxide fuel cells (SOFC) due to its high electrical conductivity and oxygen permeation flux. However, this phase is not stable below 900 °C where a 3C-cubic to 2H-hexagonal phase transition takes place when the sample is slowly cooled down. In this work we have stabilized a 3C-tetragonal P4/mmm structure for SrCo1−xNbxO3−δ with x = 0.05. We have followed the strategy consisting of introducing a highly-charged cation at the Co sublattice, in order to avoid the stabilization of the unwanted 2H structure containing face-sharing octahedra. The characterization of this oxide included X-ray (XRD) and neutron powder diffraction (NPD) experiments. SrCo0.95Nb0.05O3−δ adopts a tetragonal superstructure of perovskite with a = a0, c = 2a0 (a0 ≈ 3.9 Å) defined in the P4/mmm space group containing two inequivalent Co positions. Flattened and elongated (Co,Nb)O6 octahedra alternate along the c axis sharing corners in a three-dimensional array (3C-like structure). In the test cell, the electrodes were supported on a 300-μm-thick pellet of the electrolyte La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM). The test cells gave a maximum power density of 0.4 and 0.6 W/cm2 for temperatures of 800 and 850 °C, respectively, with pure H2 as fuel and air as oxidant. The good performance of this material as a cathode is related to its mixed electronic-ionic conduction (MIEC) properties, which can be correlated to the investigated structural features: the Co3+/Co4+ redox energy at the top of the O-2p bands accounts for the excellent electronic conductivity, which is favored by the corner-linked perovskite network. The considerable number of oxygen vacancies, with the oxygen atoms showing high displacement factors suggests a significant ionic mobility.  相似文献   

13.
This paper contains the results of research on chemical-looping combustion (CLC). CLC is one of the most promising combustion technologies and has the main advantage of producing a concentrated CO2 stream, which is obtained after water condensation and without any energy penalty for CO2 separation. The objective of this work was to study the chemical-looping reaction performance of novel perovskite-type oxygen carriers. The Sr(Mn1−xNix)O3 family was tested for its suitability as an oxygen carrier in hydrogen (syngas component) combustion for power generation. Sr(Mn1−xNix)O3 perovskite-type oxides with x = 0, 0.2, 0.5, 0.8, and 1.0 were prepared. Thermogravimetric measurements were performed to investigate the oxidation/reduction of the obtained materials. Reactivity tests were performed under isothermal conditions during multiple redox cycles using a thermogravimetric analyzer (TGA). For the reduction reaction, 3% H2 in Ar was used, and air was used for the oxidation cycle. The effect of reaction temperature (600–800 °C) and the number of reducing/oxidizing cycles (up to 5 cycles) on the performance of the oxygen-carrier samples developed in this study were evaluated. The stability, oxygen transport capacity, and reaction rates were analyzed on the basis of thermogravimetric TG results. The Sr(Mn1−xNix)O3 oxides showed stable chemical-looping performance with rapid changes in their oxygen content (2–3 min) while maintaining their chemical properties. The cyclic redox reaction revealed that Sr(Mn1−xNix)O3 exhibits excellent structural stability and provides a continuous oxygen supply during redox reactions. Good oxygen capacity was maintained during the cycling hydrogen combustion tests. These new perovskite-type materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements and by surface area (BET), particle size distribution (PSD) and melting behavior analyses. The Sr(Mn1−xNix)O3 oxides exhibited high melting temperatures and small surface areas. The promising results obtained from chemical-looping combustion experiments indicate that the Sr(Mn1−xNix)O3 oxides are potentially useful oxygen carriers for chemical-looping combustion processes where hydrogen is one of the fuel components.  相似文献   

14.
Hydrogen in metal hydrides could be one of the promising energy storage mediums to address the intermittent nature of renewable energy. To convert the hydrogen energy to electricity, the storage system has to be coupled with a fuel cells system. Hence, it is important to design a hydrogen storage system that meets the operating requirements for a fuel cell system. In this work, the effects of partial substitution of both cerium and aluminum on the hydrogenation properties of La(0.65−x)CexCa1.03Mg1.32Ni(9−y)Aly alloys were investigated simultaneously using factorial design. Both Ce and Al additions greatly improved the reversibility of hydrogen storage capacity. However, the maximum hydrogen storage capacity and absorption kinetics can be reduced by the additions. As Ce and Al gave opposite effects on the absorption and desorption plateaus, they could be used to tune the properties of the alloys to the desired operating conditions for fuel cell applications.  相似文献   

15.
Double-perovskites YBaCo2−xFexO5+δ (YBCF, x = 0.0, 0.2, 0.4 and 0.6) are synthesized with a solid-state reaction and are assessed as potential cathode materials for utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs) on the La0.9Sr0.1Ga0.8Mg0.115Co0.085O2.85 (LSGMC) electrolyte. The YBCF materials exhibit chemical compatibility with the LSGMC electrolyte up to a temperature of 950 °C. The conductivity of the YBCF samples decreases with increasing Fe content, and the maximum conductivity of YBCF is 315 S cm−1 at 325 °C for the x = 0.0 sample. A semiconductor-metal transition is observed at about 300-400 °C. The thermal expansion coefficient of the YBCF samples increases from 16.3 to 18.0 × 10−6 K−1 in air at temperatures between 30 and 900 °C with increase in Fe content. The area-specific resistances of YBCF cathodes at x = 0.0, 0.2 and 0.4 on the LSGMC electrolyte are 0.11, 0.13 and 0.15 Ω cm2 at a temperature of 700 °C, respectively. The maximum power densities of the single cells fabricated with the LSGMC electrolyte, Ce0.8Sm0.2O1.9 (SDC) interlayer, NiO/SDC anode and YBCF cathodes at x = 0.0, 0.2 and 0.4 reach 873, 768 and 706 mW cm−2, respectively. This study suggests that the double-perovskites YBCF (0 ≤ x ≤ 0.4) can be potential candidates for utilization as IT-SOFC cathodes.  相似文献   

16.
Cathodic materials Sm2−xSrxNiO4 (0.5 ≤ x ≤ 1.0) for an IT-SOFC (intermediate temperature solid oxide fuel cell) were prepared by the glycine-nitrate process and characterized by XRD, SEM, ac impedance spectroscopy and dc polarization measurements. The results showed that no reaction occurred between the Sm2−xSrxNiO4 electrode and the Ce0.9Gd0.1O1.9 (CGO) electrolyte at 1100 °C, and the electrode formed good contact with the electrolyte after sintering at 1000 °C for 2 h. The electrochemical properties of these cathode materials were studied using impedance spectroscopy at various temperatures and oxygen partial pressures. Sm1.0Sr1.0NiO4 exhibited the lowest cathodic overpotential. The area specific resistance (ASR) was 3.06 Ω cm2 at 700 °C in air.  相似文献   

17.
The influence of titanium doping level in Ba0.6Sr0.4Co1−yTiyO3−δ (BSCT) oxides on their phase structure, electrical conductivity, thermal expansion coefficient (TEC), and single-cell performance with BSCT cathodes has been investigated. The incorporation of Ti can lead to the phase transition of Ba0.6Sr0.4CoO3−δ from hexagonal to cubic structure. The solid solution limitation of Ti in Ba0.6Sr0.4Co1−yTiyO3−δ is 0.15–0.3 under 1100 °C. BSCT shows a small polaron conduction behavior and the electrical conductivity increases steadily in the testing temperature range (300–900 °C), leading to a relatively high conductivity at high temperatures. The electrical conductivity decreases with increasing Ti content. The addition of Ti deteriorates the cathode performance of BSCT slightly but decreases the TEC significantly. The TEC of BSCT is about 14 × 10−6 K−1, which results in a good physical compatibility of BSCT with Gd0.2Ce0.8O2−δ (GDC) electrolyte. BSCT also shows excellent thermal cyclic stability of electrical conductivity and good chemical stability with GDC. These properties make BSCT a promising cathode candidate for intermediate temperature solid oxide fuel cells (IT-SOFCs).  相似文献   

18.
A layered perovskite oxide, GdBaCoFeO5+x (GBCF), was investigated as a novel cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). A laboratory-sized Sm0.2Ce0.8O1.9 (SDC)-based tri-layer cell of NiO–SDC/SDC/GBCF was tested under intermediate-temperature conditions of 550–650 °C with humidified H2 (∼3% H2O) as a fuel and the static ambient air as oxidant. A maximal power density of 746 mW cm−2 was achieved at 650 °C. The interfacial polarization resistance was as low as 0.42, 0.18 and 0.11 Ω cm2 at 550, 600 and 650 °C, respectively. The experimental results indicate that the layered perovskite GBCF is a promising cathode candidate for IT-SOFCs.  相似文献   

19.
A polyvinyl alcohol assisted combustion synthesis method was used to prepare Ce0.8Sm0.2O2−δ (SDC) powders for an intermediate temperature solid oxide fuel cell (IT-SOFC). The XRD results showed that this combustion synthesis route could yield phase-pure SDC powders at a relatively low calcination temperature. A thin SDC electrolyte film with thickness control was produced by a dry pressing method at a lower sintering temperature of 1250 °C. With Sm0.5Sr0.5Co3-SDC as the composite cathode, a single cell based on this thin SDC electrolyte was tested from 550 to 650 °C. The maximum power density of 936 mW cm−2 was achieved at 650 °C using humidified hydrogen as the fuel and stationary air as the oxidant.  相似文献   

20.
The water–gas shift (WGS) reaction was examined over Pt and Pt–CeOx catalysts supported on CexZr1−xO2 (Ce0.05Zr0.95O2, Ce0.2Zr0.8O2, Ce0.4Zr0.6O2, Ce0.6Zr0.4O2, Ce0.7Zr0.3O2 and Ce0.8Zr0.2O2) under severe reaction conditions, viz. 6.7 mol% CO, 6.7 mol% CO2, and 33.2 mol% H2O in H2. The catalysts were characterized with several techniques, including X-ray diffraction (XRD), CO chemisorption, temperature-programmed reduction (TPR) with H2, temperature-programmed oxidation (TPO), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and bright-field transmission electron microscopy (TEM). Among the supported Pt catalysts tested, Pt/Ce0.4Zr0.6O2 showed the highest WGS activity in all temperature ranges. An improvement in the WGS activity was observed when CeOx was added with Pt on CexZr1−xO2 supports (x = 0.05 and 0.2) due to intimate contact between Pt and CeOx species. Based on CO chemisorptions and TPR profiles, it has been found that the interaction between Pt species and surface ceria-zirconia species is beneficial to the WGS reaction. A gradual decrease in the catalytic activity with time-on-stream was found over Pt and Pt–CeOx catalysts supported on CexZr1−xO2, which can be explained by a decrease in the Pt dispersion. The participation of surface carbonate species on deactivation appeared to be minor because no improvement in the catalytic activity was found after the regeneration step where the aged catalyst was calcined in 10 mol% O2 in He at 773 K and subsequently reduced in H2 at 673 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号