首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific oligonucleotide primers were used to identify and isolate IFN-gamma-inducing factor (IGIF) from the brain of rats with developing experimental autoimmune encephalomyelitis (EAE), a T cell-mediated autoimmune disease of the central nervous system that serves as a model for multiple sclerosis. IGIF was highly transcribed in the brain at the onset and during the course of active EAE. PCR products encoding rat IGIF were used to generate the recombinant protein that was used to induce anti-IGIF neutralizing Abs. These Abs significantly reduced the production of IFN-gamma by primed T cells proliferating in response to their target myelin basic protein epitope and by Con A-activated T cells from naive donors. When administered to rats during the development of either active or transferred EAE, these Abs significantly blocked the development of disease. Splenic T cells from protected rats were cultured with the encephalitogenic myelin basic protein epitope and evaluated for production of IL-4 and IFN-gamma. These cells, which proliferated, exhibited a profound increase in IL-4 production that was accompanied by a significant decrease in IFN-gamma and TNF-alpha production. Thus, we suggest that perturbation of the Th1/Th2 balance toward Th2 cells is the mechanism underlying EAE blockade by anti-IGIF immunotherapy.  相似文献   

2.
An immunodominant epitope of myelin basic protein (MBP), VHFFKNIVTPRTP (p87-99), is a major target of T cells in brain lesions of multiple sclerosis (MS), and this peptide can trigger experimental autoimmune encephalomyelitis (EAE). We designed truncated peptides based on this pathogenic 13-mer that are not antigenic. These short peptides reduced production of IFN-gamma and TNF-alpha in vivo. Moreover, paraplegic rats given the 7-mer FKNIVTP in soluble form showed total reversal of paralysis in 24 h. Truncated peptides that are too small to stimulate antigenic responses to pathogenic regions of myelin basic protein are nevertheless effective tolerogens and are able to anergize autoreactive T cells. Short peptide-based tolerogens, devoid of immunogenic and pathogenic potential, may be attractive for therapy of autoimmune diseases.  相似文献   

3.
The mechanisms underlying spontaneous remission of autoimmune diseases are presently unknown, though regulatory T cells are believed to play a major role in this process. We tested the hypothesis that Th2 and/or other T cell regulatory cytokines cause the spontaneous remission of experimental allergic encephalomyelitis (EAE), a model of Th1-mediated autoimmunity. We analyzed the cytokine profile of lymph node and central nervous system-infiltrating cells in individual SJL mice at different stages of proteolipid protein (PLP) 139-151 peptide-induced EAE. We found that IFN-gamma slowly fades away after clinical recovery, whereas IL-4, IL-10 and transforming growth factor-beta remain low or undetectable. Our peptide-results therefore suggest that regulatory T cells producing anti-inflammatory cytokines are not involved in spontaneous remission of EAE and challenge the view that the Th1/Th2 balance has a key role in EAE regulation.  相似文献   

4.
Linomide (quinoline-3-carboxamide) is a synthetic immunomodulator that suppresses several experimental autoimmune diseases. Here we report the effects of Linomide on chronic progressive and/or relapsing experimental autoimmune encephalomyelitis (PR-EAE), a CD4+ T cell mediated animal model of multiple sclerosis (MS). PR-EAE induced in DA rats by inoculation with homogenized guinea pig spinal cord and Freund's complete adjuvant, was strongly suppressed by Linomide administered daily subcutaneously from the day of inoculation. Linomide dose-dependently delayed the interval between immunization and onset of clinical PR-EAE, reduced severity and relapse of clinical PR-EAE, and shortened clinical PR-EAE. These clinical effects were associated with the down-modulation of CNS antigen-induced T cell responses and production of proinflammatory cytokines (IFN-gamma and TNF-alpha) as well as with upregulation of IL-4 (except in spleen MNC), IL-10 and TGF-beta in both spleen MNC and the spinal cord. These effects indicate that Linomide can suppress PR-EAE and may mediate its suppressive effects by regulation of cytokines.  相似文献   

5.
In organ-specific autoimmune diseases, T cells involved in the disease development bear a particular type of TCR and infiltrate the target organ predominantly. However, it is difficult to identify disease-inducing T cells in peripheral blood lymphocytes (PBL) because such T cells are very few in number in a large pool of unrelated T cells. In the present study, we demonstrate that CDR3 spectratyping can identify experimental autoimmune encephalomyelitis (EAE)-specific patterns (oligoclonal expansion of Vbeta8.2 with the shortest CDR3) in PBL at the preclinical and clinical stages of acute EAE. Analysis of nucleotide and predicted amino acid sequences of Vbeta8.2 CDR3 of spectratype-derived clones revealed that CASSDSSYEQYFGPG, which is one of the representative sequences of encephalitogenic T cell clones, constituted the predominant population in both PBL and spinal cord T cells. In chronic relapsing EAE, the EAE-specific spectratype pattern in PBL was observed during the 1 st and 2nd attacks, but not at the remission and full recovery stage. These findings indicate that the spectratyping pattern in PBL reflects the disease activity of acute and chronic relapsing EAE. Thus, CDR3 spectratyping using PBL can be used for diagnosis and assessment of T cell-mediated autoimmune diseases and is applicable to human autoimmune diseases.  相似文献   

6.
Induction of neonatal T cell tolerance to soluble antigens requires the use of incomplete Freund's adjuvant (IFA). The side effects that could be associated with IFA and the ill-defined mechanism underlying neonatal tolerance are setbacks for this otherwise attractive strategy for prevention of T cell-mediated autoimmune diseases. Presumably, IFA contributes a slow antigen release and induction of cytokines influential in T cell differentiation. Immunoglobulins (Igs) have long half-lives and could induce cytokine secretion by binding to Fc receptors on target cells. Our hypothesis was that peptide delivery by Igs may circumvent the use of IFA and induce neonatal tolerance that could confer resistance to autoimmunity. To address this issue we used the proteolipid protein (PLP) sequence 139-151 (hereafter referred to as PLP1), which is encephalitogenic and induces experimental autoimmune encephalomyelitis (EAE) in SJL/J mice. PLP1 was expressed on an Ig, and the resulting Ig-PLP1 chimera when injected in saline into newborn mice confers resistance to EAE induction later in life. Mice injected with Ig-PLP1 at birth and challenged as adults with PLP1 developed T cell proliferation in the lymph node but not in the spleen, whereas control mice injected with Ig-W, the parental Ig not including PLP1, developed T cell responses in both lymphoid organs. The lymph node T cells from Ig-PLP1 recipient mice were deviated and produced interleukin (IL)-4 instead of IL-2, whereas the spleen cells, although nonproliferative, produced IL-2 but not interferon (IFN)-gamma. Exogenous IFN-gamma, as well as IL-12, restored splenic proliferation in an antigen specific manner. IL-12-rescued T cells continued to secrete IL-2 and regained the ability to produce IFN-gamma. In vivo, administration of anti-IL-4 antibody or IL-12 restored disease severity. Therefore, adjuvant-free induced neonatal tolerance prevents autoimmunity by an organ-specific regulation of T cells that involves both immune deviation and a new form of cytokine- dependent T cell anergy.  相似文献   

7.
8.
Aminoguanidine (AG), a selective inhibitor of inducible nitric oxide synthase, prevented the clinical development of experimental autoimmune encephalomyelitis (EAE) with a reduction in inflammation and demyelination. Administration of AG reduced the expression of nitrosotyrosine in inflammatory lesions in the central nervous system. Cytokine expression, determined by semiquantitative PCR, revealed increased expression of IFN-gamma, IL-10, and TGF-beta, which was associated with protection from EAE, and reduced TNF-alpha, associated with the development of EAE. Furthermore, AG blocked the secretion of nitric oxide, TNF-alpha, and PGE2 in astrocyte cultures. AG did not influence the proliferation response of T cells to a pathogenic epitope of myelin basic protein. Down-regulation of nitric oxide by AG has widespread consequences for cytokine production in central nervous system inflammation and prevents EAE.  相似文献   

9.
Cross-reactivity with environmental antigens has been postulated as a mechanism responsible for the induction of autoimmune disease. Experimental autoimmune encephalomyelitis is a T cell-mediated autoimmune disease model inducible in susceptible strains of laboratory animals by immunization with protein constituents of myelin. We used myelin proteolipid protein (PLP) peptide 139-151 and its analogues to define motifs to search a protein database for structural homologues of PLP139-151 and identified five peptides derived from microbial Ags that elicit immune responses that cross-react with this self peptide. Exposure of naive SJL mice to the cross-reactive environmental peptides alone was insufficient to induce autoimmune disease even when animals were treated with Ag-nonspecific stimuli (superantigen or LPS). However, immunization of SJL mice with suboptimal doses of PLP139-151 after priming with cross-reactive environmental peptides consistently induced experimental autoimmune encephalomyelitis. Furthermore, T cell lines from mice immunized with cross-reactive environmental peptides and restimulated in vitro with PLP139-151 could induce disease upon transfer into naive recipients. These data suggest that expansion by self Ag is required to break the threshold to autoimmune disease in animals primed with cross-reactive peptides.  相似文献   

10.
Autoimmune diseases originate from a rupture in physiological immune tolerance towards self antigens. However, the formation of autoantibodies and autoreactive inflammatory cells is also regulated by the cytokine network, in which interferon-gamma (IFN-gamma), produced by NK and T lymphocytes, occupies a central position. IFN-gamma influences the function of all cell types involved in immune-mediated inflammatory reactions: antigen-presenting cells, cytotoxic and regulatory T lymphocytes, antibody-producing B lymphocytes, endothelial cells and mononuclear phagocytes. Experimental manipulations which affect the production or action of IFN-gamma invariably affect the course of experimentally induced autoimmune diseases in animals, but do so in divergent directions. A current explanatory framework for these actions of IFN-gamma invokes the T helper-1/T helper-2 (Th1/Th2) concept. According to this concept, autoimmune diseases, like other immune reactions, fall apart in two categories depending on whether the T helper lymphocytes assume a Th1 or Th2 profile. IFN-gamma is assumed to fulfill the function of a promotor and effector of the Th1 profile and is associated with inflammation and tissue damage typical for cell-mediated hypersensitivity reactions. Accordingly, IFN-gamma should boost autoimmune diseases of the Th1 type. However, experimental testing of this prediction contradicts this implication and necessitates revision of the function assigned to IFN-gamma in the Th1/Th2 concept.  相似文献   

11.
CD4+ T cells may be assigned a functional status (Th1 or Th2) according to the cytokines they produce including IL-2, IFN-gamma and IL-4. Th1 and Th2 CD4+ T cells deliver different isotype-switching signals to antigen-specific B cells which bias the serum Ig isotypes. The stimulation of Th1 or Th2 responses is influenced by adjuvants and administration of antigen in IFA results in Th1 unresponsiveness as evidenced by: (i) reduced T cell proliferation to antigen; (ii) reduced IFN-gamma production in response to antigen; and (iii) reduced IgG2a isotype antigen-specific antibodies following antigen/CFA challenge. The impact of established human gamma globulin (HGG) specific Th1 unresponsiveness on subsequent immunization with an unrelated antigen, human serum albumin (HSA) in Th1-inducing CFA was then examined. When subsequently challenged with a mixture of HSA and HGG in CFA the HGG-specific Th1 unresponsiveness was infectious and dominant, preventing the induction of a Th1 response to HSA. Reduced T cell proliferation, IFN-gamma production and IgG2a antibody were consequently observed in response to HSA. The HGG-specific Th1 unresponsiveness was not infectious when HGG/CFA and HSA/CFA were administered at separate sites. This demonstrates that antigen-specific Th1 unresponsiveness can be infectious for new, molecularly unrelated antigens and supports studies showing that Th1-mediated autoimmune diseases such as experimental allergic encephalomyelitis (EAE) and diabetes can be ameliorated using antigens molecularly distinct from the disease-inducing immunogen.  相似文献   

12.
Experimental allergic encephalomyelitis (EAE) is an inflammatory, CD4+ Th1-mediated autoimmune disease, which serves as a model for multiple sclerosis. We examined the effect of a novel anti-inflammatory drug, lisofylline (LSF), on EAE induced either by injection of mouse spinal cord homogenate or following transfer of myelin basic protein-reactive T cells. Orally administered LSF significantly inhibited EAE in both cases, decreasing peak clinical scores by >70% and >80%, respectively. In addition, analysis of representative spinal cord sections from LSF-treated mice showed complete lack of demyelination and lymphocyte infiltration. The reduction in EAE correlated with the inhibition of Th1 differentiation by LSF in vivo, as indicated by a reduction in T cell IFN-gamma production ex vivo after Ag restimulation. The inhibition of Th1 differentiation in vivo is consistent with a block in IL-12 receptor signaling, because LSF blocked IL-12-driven Th1 differentiation and T cell proliferation in vitro, yet had no effect on IL-12 secretion from APCs ex vivo or in vitro.  相似文献   

13.
Nasal administration of soluble antigens is an exciting means of specifically down-regulating pathogenic T-cell reactivities in autoimmune diseases. The mechanisms by which nasal administration of soluble antigens suppresses autoimmunity are poorly understood. To define further the principles of nasal tolerance induction, we studied the effects of nasal administration of myelin basic protein (MBP) on experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. EAE is a CD4+ T-cell-mediated animal model for human multiple sclerosis. Nasal administration of guinea-pig (gp)-MBP at a dose as low as 30 micrograms/rat can completely prevent gp-MBP-induced EAE, whereas nasal administration of bovine (b)-MBP is not effective even at a much higher dosage. Cellular immune responses, as reflected by T-cell proliferation and interferon-gamma (IFN-gamma)-ELISPOT, were suppressed in rats receiving the two different doses (30 and 600 micrograms/rat) of gp-MBP, but not after administration of b-MBP. Rats tolerized with both doses of gp-MBP had also abrogated MBP-induced IFN-gamma mRNA expression in popliteal and inguinal lymph node mononuclear cells compared with rats receiving phosphate-buffered saline nasally. However, adoptive transfer revealed that only spleen mononuclear cells from rats pretreated with a low dose, but not from those pretreated with a high dose, of gp-MBP transferred protection to actively induced EAE. Low-dose (30 micrograms/rat) gp-MBP-tolerized rats also had high numbers of interleukin-4 (IL-4) mRNA-expressing lymph node cells, while high-dose (600 micrograms/rat) gp-MBP-tolerized rats had low numbers of IL-4 mRNA-expressing lymph node cells. Our data suggest an exquisite specificity of nasal tolerance. Dose-dependent mechanisms also relate to nasal tolerance induction and protection against EAE in the Lewis rat.  相似文献   

14.
Multiple sclerosis is an immune-mediated demyelinating disease of unknown etiology that presents with either a chronic-progressive or relapsing-remitting clinical course. Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) and relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE) in the SJL/J mouse are both relevant murine CD4+ T cell-mediated demyelinating models that recapitulate the multiple sclerosis disease phenotypes. To determine the cellular and molecular basis for these observed differences in clinical course, we quantitatively analyzed the temporal expression of pro- and antiinflammatory cytokine mRNA expression in the central nervous system (CNS) and the phenotype of the inflammatory mononuclear infiltrates. TMEV-infected SJL/J mice expressed IFN-gamma, TNF-alpha, IL-10, and IL-4 mRNA during the preclinical phase, and their levels continued to increase throughout the duration of the chronic-progressive disease course. These data correlated with the continued presence of both CD4+ T cells and F4/80+ macrophages within the CNS infiltrates. In contrast, SJL/J mice with PLP(139-151)-induced R-EAE displayed a biphasic pattern of CNS expression for the proinflammatory cytokines, IFN-gamma and TNF-alpha, with expression peaking at the height of the acute phase and relapse(s). This pattern correlated with dynamic changes in the CD4+ T cell and F4/80+ macrophage populations during relapsing-remitting disease progression. Interestingly, IL-4 message was undetectable until disease remission(s), demonstrating its potential role in the intrinsic regulation of ongoing disease, whereas IL-10 was continuously expressed, arguing against a regulatory role in either disease. These data suggest that the kinetics of cytokine expression together with the nature of the persistent inflammatory infiltrates are major contributors to the differences in clinical course between TMEV-IDD and R-EAE.  相似文献   

15.
Chronic progression of autoimmune disease is accompanied by the acquisition of autoreactivity to new self-determinants. Recent evidence indicates that this process, commonly referred to as determinant spreading, may be pathogenic for chronicity. Our studies on experimental autoimmune encephalomyelitis (EAE), a murine model widely used in multiple sclerosis (MS) studies, have shown that determinant spreading develops as a predictable sequential cascade of neo-autoimmunity during progression to chronic disease. By 7-8 weeks after immunization of (SWR x SJL)F1 mice with the immunodominant myelin proteolipid protein determinant (PLP 139-151), splenocytes consistently respond to the immunodominant myelin basic protein determinant (MBP 87-99). In the present study, we directly address the pathogenicity of neo-autoimmunity resulting from endogenous self-priming during the course of disease. Our results indicate that T cells responding to the spreading MBP 87-99 determinant produce a proinflammatory cytokine profile consistent with type 1 helper T cells (Th1) cells. In addition, splenocytes activated to the spreading MBP 87-99 determinant consistently transfer acute EAE in naive recipients even when T cells reactive to the priming PLP 139-151 immunogen are eliminated by bromodeoxyuridine (BUdR)-mediated photolysis. Our data indicate that endogenous neo-autoantigen priming during chronic autoimmune disease generates type 1 helper T cells (Th1) cells that are autonomously pathogenic. These results provide further evidence supporting the view that determinant spreading is a pathogenic process that leads to chronic progression of autoimmune disease.  相似文献   

16.
17.
The development of T cell-mediated autoimmune diseases hinges on the balance between effector and regulatory mechanisms. Using two transgenic mouse lines expressing identical myelin basic protein (MBP)-specific T cell receptor (TCR) genes, we have previously shown that mice bearing exclusively MBP-specific T cells (designated T/R-) spontaneously develop experimental autoimmune encephalomyelitis (EAE), whereas mice bearing MBP-specific T cells as well as other lymphocytes (designated T/R+) did not. Here we demonstrate that T/R- mice can be protected from EAE by the early transfer of total splenocytes or purified CD4(+) T cells from normal donors. Moreover, whereas T/R+ mice crossed with B cell-deficient, gamma/delta T cell-deficient, or major histocompatibility complex class I-deficient mice did not develop EAE spontaneously, T/R+ mice crossed with TCR-alpha and -beta knockout mice developed EAE with the same incidence and severity as T/R- mice. In addition, MBP-specific transgenic mice that lack only endogenous TCR-alpha chains developed EAE with high incidence but reduced severity. Surprisingly, two-thirds of MBP-specific transgenic mice lacking only endogenous TCR-beta chains also developed EAE, suggesting that in T/R+ mice, cells with high protective activity escape TCR-beta chain allelic exclusion. Our study identifies CD4(+) T cells bearing endogenous alpha and beta TCR chains as the lymphocytes that prevent spontaneous EAE in T/R+ mice.  相似文献   

18.
Intracisternal (IC) transfer of cerebrospinal fluid (CSF) mononuclear cells from multiple sclerosis (MS) patients has been reported by others to induce an 'MS-like pathology' in severe combined immunodeficient (SCID) mice. We injected cells from several sources intracisternally into SCID mice and assessed the recipients for clinical and histological disease. CSF cells and myelin basic protein (BP)-specific T lymphocytes from MS patients failed to induce clinical or histological disease following IC injection in SCID mice. Similarly, encephalitogenic BP-specific T cells from Lewis rats were unable to induce disease after IC injection in either SCID mice or Lewis rats, even at cell numbers which induced experimental autoimmune encephalomyelitis in Lewis rats following intraperitoneal (IP) injection. In contrast, naive Lewis rat splenocytes, which were capable of inducing lethal graft-versus-host (GVH) disease following IP transfer in SCID mice, induced paralysis and histopathological changes following IC transfer in SCID mice. We conclude that MS CSF cells do not typically transfer disease into SCID mice following IC injection. Furthermore, it appears likely that neuropathological disease following IC transfer of cells reflects the potential of the transferred cells for inducing GVH disease. Specific recognition of neuroantigens by T cells, as occurs in EAE, is probably not involved in the transfer of paralytic disease by IC transferred MS patient CSF cells.  相似文献   

19.
In experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, we showed previously that depletion of gammadelta T cells using the mAb GL3 immediately before disease onset, or during the chronic phase, significantly ameliorated clinical severity. We now report on the effect of gammadelta T cell depletion on expression of five cytokine genes, IL-1, IL-6, TNF, lymphotoxin, and IFN-gamma in spinal cords of mice during the pre-onset, onset, height, and recovery phases of EAE, and on expression of type II nitric oxide synthase. In control animals, the mRNAs for IL-1 and IL-6 rose dramatically at disease onset and peaked before disease height, whereas the mRNAs for TNF, lymphotoxin, and IFN-gamma rose more slowly and peaked with peak of disease. In GL3-treated animals, a dramatic reduction in all five cytokines was noted at disease onset, but only IFN-gamma remained significantly reduced at a time point equivalent to height of disease in control animals. ELISA data confirmed the reduced levels of IL-1 and IL-6 at disease onset in GL3-treated animals, and pathologic analysis demonstrated a marked reduction in meningeal infiltrates at the same time point. Studies of type II NOS also demonstrated a significant reduction in both mRNA and protein expression at the height of disease in GL3-treated animals. These results suggest that gammadelta T cells contribute to the pathogenesis of EAE by regulating the influx of inflammatory cells into the spinal cord and by augmenting the proinflammatory cytokine profile of the inflammatory infiltrates.  相似文献   

20.
There is controversy regarding the possible role of glial cells as APCs in the pathogenesis of central nervous system (CNS) demyelinating diseases such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Microglia have been clearly shown to present Ag in the CNS, and due to the proximity of activated astroglial cells to infiltrating T cells and macrophages in demyelinating lesions, it is also possible that astrocytes positively or negatively regulate disease initiation and/or progression. We examined the capacity of IFN-gamma-treated astrocytes from EAE-susceptible SJL/J mice to process and present myelin epitopes. IFN-gamma activation up-regulated ICAM-1, VCAM-1, MHC class II, invariant chain, H2-M, CD40, and B7-1 as determined by FACS and/or RT-PCR analyses. B7-2 expression was only marginally enhanced on SJL/J astrocytes. Consistent with the expression of these accessory molecules, IFN-gamma-treated SJL/J astrocytes induced the B7-1-dependent activation of Th1 lines and lymph node T cells specific for the immunodominant encephalitogenic proteolipid protein (PLP) epitope (PLP139-151) as assessed by proliferation and activation for the adoptive transfer of EAE. Interestingly, IFN-gamma-activated astrocytes efficiently processed and presented PLP139-151, but not the subdominant PLP178-191, PLP56-70, or PLP104-117 epitopes, from intact PLP and a recombinant variant fusion protein of PLP (MP4). The data are consistent with the hypothesis that astrocytes in the proinflammatory CNS environment have the capability of activating CNS-infiltrating encephalitogenic T cells specific for immunodominant epitopes on various myelin proteins that may be involved in either the initial or the relapsing stages of EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号