首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
现有的单幅图像超分辨率重建算法大都在追求高峰值信噪比(Peak signal-to-noise ratio, PSNR),在特征提取过程中缺少对图像纹理细节信息的关注,导致重建图像的人眼主观感知效果不太理想。为了解决这一问题,本文提出了一种基于卷积神经网络梯度和纹理补偿的单幅图像超分辨率重建算法。具体设计了3条支路分别用于结构特征提取、纹理细节特征提取及梯度补偿,然后利用所提出的融合模块对结构特征和纹理细节特征进行融合。为防止重建过程中丢失图像的纹理信息,提出纹理细节特征提取模块补偿图像的纹理细节信息,增强网络的纹理保持能力;同时,利用梯度补偿模块提取的梯度信息对结构信息进行增强;此外还构建了深层特征提取结构,结合通道注意力与空间注意力对深层特征中的信息进行筛选及特征增强;最后利用二阶残差块对结构和纹理特征进行融合,使重建图像的特征信息更加完善。通过对比实验验证了本文方法的有效性和优越性。  相似文献   

2.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

3.
卷积神经网络中的层次特征可以为图像重建提供重要信息。然而,现有的一些图像超分辨率重建方法没有充分利用卷积网络中的层次特征。针对该问题,本文提出一种基于空间注意力残差网络的模型(Residual Network Based on Spatial Attention, SARN)。具体来说,首先设计一种空间注意力残差模块(Spatial Attention Residual Block, SARB),将增强型空间注意力模块(Enhanced Spatial Attention, ESA)融入残差模块中,网络可以获得更有效的高频信息;其次融入特征融合机制,将网络各层获得的特征进行融合,提高网络中层次特征的利用率;最后,将融合后特征输入重建网络,得到最终的重建图像。实验结果表明,该模型无论在客观指标上,还是主观视觉效果上均优于对比算法,这说明本文提出的模型可以有效地利用图像中的层次特征,从而获得较好的超分辨率重建效果。  相似文献   

4.
针对中间层通道特征相关性利用率低、低分辨率图像和高分辨率图像函数映射空间非线性的问题,提出了一种基于高效二阶注意力机制的对偶回归网络(ESADRNet)。该网络将重建任务分为两个回归网络:原始回归网络和对偶回归网络。原始回归网络采用FReLU为激活函数的下采样层对图像进行更高效的空间上下文特征提取;基于多级跳跃连接残差块(MLSCR)和高效二阶通道注意力模块(ESOCA)构成的多级跳跃连接残差注意力模块(MLSCRAG)、共享源跳跃连接(SSC)和亚像素卷积构建渐进式上采样网络,使网络专注于更具辨别性的特征表示,具有更强大的特征表达和特征相关学习能力;利用对偶回归网络约束映射空间,寻找最优重建函数。在Set5、Set14、BSD100和Urban109数据集上经过对比实验证明,该网络在客观定量指标和主观视觉方面均优于其他对比方法。  相似文献   

5.
针对现有残差网络存在残差特征利用不充分、细节丢失的问题,提出一种结合两层残差聚合结构和感受野扩展双注意力机制的深度神经网络模型,用于单幅图像超分辨率(SISR)重建。该模型通过跳跃连接形成两层嵌套的残差聚合网络结构,对网络各层提取的大量残差信息进行分层聚集和融合,能减少包含图像细节的残差信息的丢失。同时,设计一种多尺度感受野扩展模块,能捕获更大范围、不同尺度的上下文相关信息,促进深层残差特征的有效提取;并引入空间-通道双注意力机制,增强残差网络的判别性学习能力,提高重建图像质量。在数据集Set5、Set14、BSD100和Urban100上进行重建实验,并从客观指标和主观视觉效果上将所提模型与主流模型进行比较。客观评价结果表明,所提模型在全部4个测试数据集上均优于对比模型,其中,相较于经典的超分辨率卷积神经网络(SRCNN)模型和性能次优的对比模型ISRN(Iterative Super-Resolution Network),在放大2倍、3倍、4倍时的平均峰值信噪比(PSNR)分别提升1.91、1.71、1.61 dB和0.06、0.04、0.04 dB;视觉效果对比显示,所提模型恢...  相似文献   

6.
目前,单幅图像超分辨率重建取得了很好的效果,然而大多数模型都是通过增加网络层数来达到好的效果,并没有去发掘各通道之间的相关性。针对上述问题,提出了一种基于通道注意力机制(CA)和深度可分离卷积(DSC)的图像超分辨率重建方法。整个模型采用多路径模式的全局和局部残差学习,首先利用浅层特征提取块来提取输入图像的特征;然后,在深层特征提取块中引入通道注意力机制,通过调整各通道的特征图权重来增加通道相关性,从而提取高频特征信息;最后,重建出高分辨率图像。为了减少注意力机制带来的巨大参数影响,在局部残差块中使用了深度可分离卷积技术以大大减少训练参数,同时采用自适应矩估计(Adam)优化器来加速模型的收敛,从而提高了算法性能。该方法在Set5、Set14数据集上进行图像重建,实验结果表明不仅该方法重建的图像具有更高的峰值信噪比(PSNR)和结构相似度(SSIM),而且所提模型的参数量减少为深度残差通道注意力网络(RCAN)模型的参数量的1/26。  相似文献   

7.
为改善图像质量,提升观测效果,针对现有超分辨率重建算法由于网络层数过深导致的信息丢失、参数量大的问题,提出一种高效多注意力特征融合的图像超分辨率重建算法(EMAFFN).该算法通过渐进式特征融合块(PFFB)逐步提取图像的特征信息,减少特征信息在深层次网络传递过程中的丢失,同时结合PFFB内部的高效多注意力块(EMAB)在通道和空间两个分支作用,自适应的对提取到的特征进行加权,使网络更多的关注高频信息,最后使用多尺度感受野块(RFB_x)对提取到的特征进行增强、并多尺度融合特征来提升重建模块的性能.实验结果表明,EMAFFN在公共数据集Set5上的平均PSNR值最高达到37.93dB,SSIM达到0.9609,重建后的图像恢复了更多的高频信息,纹理细节丰富,更接近于原始图像.  相似文献   

8.
近年来,随着科学技术的高速发展,深度学习的蓬勃兴起,实现图像超分辨率重建成为计算机视觉领域一大热门研究课题.然而网络深度增加容易引起训练困难,并且网络无法获取准确的高频信息,导致图像重建效果差.本文提出基于密集残差注意力网络的图像超分辨率算法来解决这些问题.该算法主要采用密集残差网络,在加快模型收敛速度的同时,减轻了梯度消失问题.注意力机制的加入,使网络高频有效信息较大的权重,减少模型计算成本.实验证明,基于密集残差注意力网络的图像超分辨率算法在模型收敛速度上极大地提升,图像细节恢复效果令人满意.  相似文献   

9.
基于双重注意力机制的图像超分辨重建算法   总被引:1,自引:0,他引:1       下载免费PDF全文
李彬  王平  赵思逸 《图学学报》2021,42(2):206-215
近年来,卷积神经网络(CNN)在单幅图像超分辨率重建领域(SISR)展现出良好效果。深度网络 可以在低分辨率图像和高分辨率图像之间建立复杂的映射,使得重建图像质量相对传统的方法取得巨大提升。 由于现有 SISR 方法通过加深和加宽网络结构以增大卷积核的感受野,在具有不同重要性的空间域和通道域采 用均等处理的方法,因此会导致大量的计算资源浪费在不重要的特征上。为了解决此问题,算法通过双重注意 力模块捕捉通道域与空间域隐含的权重信息,以更加高效的分配计算资源,加快网络收敛,在网络中通过残差 连接融合全局特征,不仅使得主干网络可以集中学习图像丢失的高频信息流,同时可以通过有效的特征监督加 快网络收敛,为缓解 MAE 损失函数存在的缺陷,在算法中引入了一种特殊的 Huber loss 函数。在主流数据集 上的实验结果表明,该算法相对现有的 SISR 算法在图像重建精度上有了明显的提高。  相似文献   

10.
针对公共场所监控图像中低分辨率人脸图像利用现有人脸识别系统识别准确率低的问题,提出了融合先验信息的残差空间注意力人脸超分辨率重建模型,用该模型对低分辨率人脸图像进行预处理后再进行识别可大大提升识别准确率.该模型将面部先验结构信息嵌入到生成对抗网络模型中,再采用残差空间注意力激活算法突出空间位置中携带高频信息的特征,最后使用多阶特征融合算法充分利用不同尺度的特征,防止携带高频信息的人脸特征在网络传播中丢失.实验结果表明,重建出的超分辨率人脸图像具有更多的面部细节特征,大大提高了对低分辨率人脸图像的识别准确率,并且与其他5种模型相比,新模型具有较低的耗时和较少的参数.  相似文献   

11.
单幅图像超分辨率(Single Image Super Resolution,SISR)在计算机视觉领域占有重要地位,该技术旨在从低分辨率图像中重建出高分辨率图像。近年来,深度神经网络在SISR领域起到了至关重要的作用,然而,目前利用卷积神经网络平等地对待高频与低频特征,使得高频细节的重建表现不佳,输出过于平滑,缺少纹理信息。另一方面,过于深的网络不容易收敛,并且随着神经网络的深度增长,来自前一层的长期信息很容易在后期层中减弱或丢失,使得重建收益不能正比于网络的深度与计算复杂度。针对以上问题,对用于SISR的卷积神经网络的基本块提出了空间注意力模块与通道注意力模块,在同一通道中,不同位置的信息被空间注意力模块赋予不同的权重,不同通道间的权重由通道注意力模块决定,这使得高频信息在重建任务中获得更高的地位,提高了重建指标。进一步地提出了长期特征调制模块将网络的层深度转化为块深度,大大缩小了网络深度,以解决前层长期信息的丢失问题。在Set5等多个基准数据集上的峰值信噪比(PSNR)均比目前其他基于深度卷积神经网络的方法有所提升,这证明了提出的方法的有效性与先进性。  相似文献   

12.
Recent applications of convolutional neural networks (CNNs) in single image super-resolution (SISR) have achieved unprecedented performance. However, existing CNN-based SISR network structure design consider mostly only channel or spatial information, and cannot make full use of both channel and spatial information to improve SISR performance further. The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information. Specifically, we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network. This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features. A mixed attention module is inserted into each dense residual group, to enable the algorithm to fuse channel attention with laplacian spatial attention effectively, and thereby more adaptively focus on valuable feature learning. The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other state-of-the-art methods.  相似文献   

13.
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力。引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失。在网络的重建层,引入全局跳远连接结构,进一步丰富重建的高分辨率图像信息的流动。实验结果表明,所提算法在Set5等基准数据集上的PSNR、SSIM比其他基于深度卷积神经网络的方法均明显提升,验证了提出方法的有效性与先进性。  相似文献   

14.
单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经网络直接推导高分辨率图像(HR),该方法采用多阶段学习策略,首先推理出高分辨率图像对应的小波系数,然后重建超分辨率图像(SR).为了获取更多的信息,该方法采用一种残差嵌套残差的灵活可扩展的深度神经网络.此外,提出的神经网络模型采用结合图像空域与小波域的损失函数进行优化求解.所提出的方法在Set5、Set14、BSD100、Urban100等数据集上进行实验,实验结果表明,该方法的视觉效果和峰值信噪比(PSNR)均优于相关的图像超分辨率方法.  相似文献   

15.
目的 将低分辨率(low-resolution,LR)图像映射到高分辨率(high-resolution,HR)图像是典型的不适定恢复问题,即输出的HR图像和输入的LR图像之间的映射是多对一的,这意味着仅通过增加网络深度来确定HR图像与LR图像之间的特定映射关系是非常困难的。针对该问题,本文提出一种基于多监督光滑化损失函数的图像超分辨率方法。方法 该方法主体由LR图像上采样通道和HR图像下采样通道两部分组成。各通道分为两个阶段,每个阶段均包括浅层特征提取模块、基于迭代采样错误反馈机制的采样模块、全局特征融合模块和图像重建模块。将LR图像上采样通道第1阶段结果与HR图像下采样通道第1阶段结果对比,然后将HR原图像和HR图像下采样通道第2阶段结果作为约束构成多监督,使映射函数空间尽可能精确,并将多监督损失函数光滑化保证梯度在全局范围内传递。结果 在基准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)、Urban100(urban scenes dataset)、Manga109(109 manga volumes dataset)数据集上进行测试,并与Bicubic、SRCNN (super-resolution convolutional neural network)、FSRCNN (fast super-resolution convolutional neural network)、LapSRN (Laplacian pyramid super-resolution network)、VDSR (very deep super-resolution convolutional networks)、DBPN (deep back-projection networks for super-resolution)和DRN (dual regression networks)等方法的实验结果进行对比。当放大因子为4时,本文算法的峰值信噪比分别为32.29 dB、28.85 dB、27.61 dB、26.16 dB和30.87 dB;在重建图像的可视化分析方面,本文算法相较于对比算法具有更加丰富的纹理和清晰的轮廓。结论 实验结果表明,基于多监督光滑化损失函数方法的图像重建结果与其他超分辨率主流算法相比,在重建图像质量和高频细节处理方面均有所提高。  相似文献   

16.
目的 通道注意力机制在图像超分辨率中已经得到了广泛应用,但是当前多数算法只能在通道层面选择感兴趣的特征图而忽略了空间层面的信息,使得特征图中局部空间层面上的信息不能合理利用。针对此问题,提出了区域级通道注意力下的图像超分辨率算法。方法 设计了非局部残差密集网络作为网络的主体结构,包括非局部模块和残差密集注意力模块。非局部模块提取非局部相似信息并传到后续网络中,残差密集注意力模块在残差密集块结构的基础上添加了区域级通道注意力机制,可以给不同空间区域上的通道分配不同的注意力,使空间上的信息也能得到充分利用。同时针对当前普遍使用的L1和L2损失函数容易造成生成结果平滑的问题,提出了高频关注损失,该损失函数提高了图像高频细节位置上损失的权重,从而在后期微调过程中使网络更好地关注到图像的高频细节部分。结果 在4个标准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100上进行4倍放大实验,相比较于插值方法和SRCNN(image super-resolution using deep convolutional networks)算法,本文方法的PSNR(peak signal to noise ratio)均值分别提升约3.15 dB和1.58 dB。结论 区域级通道注意力下的图像超分辨率算法通过使用区域级通道注意力机制自适应调整网络对不同空间区域上通道的关注程度,同时结合高频关注损失加强对图像高频细节部分的关注程度,使生成的高分辨率图像具有更好的视觉效果。  相似文献   

17.
目的 针对以往基于深度学习的图像超分辨率重建方法单纯加深网络、上采样信息损失和高频信息重建困难等问题,提出一种基于多尺度特征复用混合注意力网络模型用于图像的超分辨率重建。方法 网络主要由预处理模块、多尺度特征复用混合注意力模块、上采样模块、补偿重建模块和重建模块5部分组成。第1部分是预处理模块,该模块使用一个卷积层来提取浅层特征和扩张特征图的通道数。第2部分是多尺度特征复用混合注意力模块,该模块加入了多路网路、混合注意力机制和长短跳连接,以此来进一步扩大特征图的感受野、提高多尺度特征的复用和加强高频信息的重建。第3部分是上采样模块,该模块使用亚像素方法将特征图上采样到目标图像尺寸。第4部分是补偿重建模块,该模块由卷积层和混合注意力机制组成,用来对经过上采样的特征图进行特征补偿和稳定模型训练。第5部分是重建模块,该模块由一个卷积层组成,用来将特征图的通道数恢复至原来数量,以此得到重建后的高分辨率图像。结果 在同等规模模型的比较中,以峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似度(structural similarity index measure,SSIM)作为评价指标来评价算法性能,在Set5、Set14、BSD100(Berkeley segmentation dataset)和Urban100的基准测试集上进行测试。当缩放尺度因子为3时,各测试集上的PSNR/SSIM依次为34.40 dB/0.927 3,30.35 dB/0.842 7,29.11 dB/0.805 2和28.23 dB/0.854 0,相比其他模型有一定提升。结论 量化和视觉的实验结果表明,本文模型重建得到的高分辨率图像不仅在重建边缘和纹理信息有很好的改善,而且在PSNR和SSIM客观评价指标上也有一定的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号