首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
A phosphorus‐containing epoxy resin, 6‐H‐dibenz[c,e][1,2] oxaphosphorin‐6‐[2,5‐bis(oxiranylmethoxy)phenyl]‐6‐oxide (DOPO epoxy resin), was synthesized and cured with phenolic novolac (Ph Nov), 4,4′‐diaminodiphenylsulfone (DDS), or dicyandiamide (DICY). The reactivity of these three curing agents toward DOPO epoxy resin was found in the order of DICY > DDS > Ph Nov. Thermal stability and the weight loss behavior of the cured polymers were studied by TGA. The phosphorus‐containing epoxy resin showed lower weight loss temperature and higher char yield than that of bisphenol‐A based epoxy resin. The high char yields and limiting oxygen index (LOI) values as well as excellent UL‐94 vertical burn test results of DOPO epoxy resin indicated the flame‐retardant effectiveness of phosphorus‐containing epoxy resins. The DOPO epoxy resin was investigated as a reactive flame‐retardant additive in an electronic encapsulation application. Owing to the rigid structure of DOPO and the pendant P group, the resulting phosphorus‐containing encapsulant exhibited better flame retardancy, higher glass transition temperature, and thermal stability than the regular encapsulant containing a brominated epoxy resin. High LOI value and UL‐94 V‐0 rating could be achieved with a phosphorus content of as low as 1.03% (comparable to bromine content of 7.24%) in the cured epoxy, and no fume and toxic gas emission were observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 353–361, 1999  相似文献   

3.
The bisphenol‐containing 4,4′‐biphenylene moiety was prepared by the reaction of 4,4′‐bis(methoxymethyl) biphenyl with phenol in the presence of p‐toluenesulfonic acid. The bisphenol was end‐capped with the cyanate moiety by reacting with cyanogen chloride and triethylamine in dichloromethane. Their structures were confirmed by Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. Thermal behaviors of cured resin were studied by differential scanning calorimetry, dynamic mechanical analysis, and TGA. The flame retardancy of cured resin was evaluated by limiting oxygen index (LOI) and vertical burning test (UL‐94 test). Because of the incorporation of rigid 4,4′‐biphenylene moiety, the cyanate ester (CE) resin shows good thermal stability (Tg is 256°C, the 5% degradation temperature is 442°C, and char yield at 800°C is 64.4%). The LOI value of the CE resin is 42.5, and the UL‐94 rating reaches V‐0. Moreover, the CE resin shows excellent dielectric property (dielectric constant, 2.94 at 1 GHz and loss dissipation factor, 0.0037 at 1 GHz) and water resistance (1.08% immersed at boiling water for 100 h). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Miaojun Xu  Xu Li  Bin Li 《火与材料》2016,40(6):848-860
A novel cross‐linked organophosphorus–nitrogen polymetric flame retardant additive poly(urea tetramethylene phosphonium sulfate) defined as PUTMPS was synthesized by the condensation polymerization between urea and tetrahydroxymethyl phosphonium sulfate. Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 13C and 31P solid‐state nuclear magnetic resonance. The synthesized PUTMPS and curing agent m‐phenylenediamine were blended into epoxy resins to prepare flame retardant epoxy resin thermosets. The effects of PUTMPS on fire retardancy and thermal degradation behavior of EP/PUTMPS thermosets were investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter measurement, and thermalgravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS), respectively. Water resistant properties of epoxy resin thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the EP/12 wt% PUTMPS thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value reached 31.3%. The TGA results indicated that the incorporation of PUTMPS promoted epoxy resin matrix decomposed and char forming ahead of time, which led to a higher char yield and thermal stability for epoxy resin thermosets at high temperature. The morphological structures and analysis of XPS for the char residues of the epoxy resin thermosets shown that PUTMPS benefited to the formation of a sufficient, more compact, and homogeneous char layer with rich flame retardant elements on the materials surface during burning, which prevented the heat transmission and diffusion, limited the production of combustible gases, inhibited the emission of smoke, and then led to the reduction of the heat release rate and smoke produce rate. After water resistance tests, EP/12 wt% PUTMPS thermosets still remained excellent flame retardancy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A series of UV‐curable flame‐retardant resins was obtained by blending phosphate acrylate (BTP) in different ratios with epoxy acrylate resin (EA). The flammability was characterized by limiting oxygen index (LOI), UL 94 flammability rating and cone calorimeter, and the thermal degradation of the flame‐retardant resins was studied using thermo gravimetric analysis (TGA), and real‐time Fourier transform infrared (RTFTIR). The results indicated that the flame‐retardant efficiency increases with the addition of BTP. The heat release rate with the addition of BTP decreases greatly. The TGA data showed that EA/BTP blends have lower initial decomposition temperatures and higher char residues than pure EA, whereas BTP has the lowest initial decomposition temperature and the highest char residue. The RTFTIR study indicates that the EA/BTP blends have lower thermal oxidative stability than the pure EA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A dicyclopentadiene‐based benzoxazine (DCPDBZ) was prepared and separately copolymerized with melamine–phenol formaldehyde novolac or phosphorus‐containing phenolic resin (phosphorus‐containing diphenol) at various molar ratios. Their curing behaviors were characterized by differential scanning calorimetry. The electrical properties of the cured resins were studied with a dielectric analyzer. The glass‐transition temperatures were measured by dynamic mechanical analysis. The thermal stability and flame retardancy were determined by thermogravimetric analysis and a UL‐94 vertical test. These data were compared with those of bisphenol A benzoxazine and 4,4′‐biphenol benzoxazine systems. The effects of the diphenol structure and cured composition on the dielectric properties, moisture resistance, glass‐transition temperature, thermal stability, and flame retardancy are discussed. The DCPDBZ copolymerized with phosphorus‐containing novolac exhibited better dielectric properties, moisture resistance, and flame retardancy than those of the melamine‐modified system. The flame retardancy of the cured benzoxazine/phosphorus‐containing phenolic resins increased with increasing phosphorus content. The results indicate that the bisphenol A and 4,4′‐biphenol systems with a phosphorus content of about 0.6% and the dicyclopentadiene system with a phosphorus content of about 0.8% could achieve a flame‐retardancy rating of UL‐94 V‐0. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A novel silicone‐containing flame retardant (HSOBA) synthesized from hydrogen‐containing silicone oil and Bisphenol A via a simple approach has been incorporated into polycarbonate (PC) matrix to study its effects on the flame retardancy. The flame retardancy of PC/HSOBA composites is investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter measurement. The LOI value of the composites is 31.7 and the UL‐94 rating reaches V‐0, when the content of HSOBA is 3 wt %. Cone calorimeter data confirm that the HSOBA acts as an effective additive functioning both as flame retardants and as smoke suppressant. Evolution of the thermal behaviors of the composites tested by TGA, the morphological structures, and the constituent of char residue after LOI tests characterized by scanning electronic microscopy‐energy‐dispersive X‐ray analysis were used to explain the possible flame‐retardant mode. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In this article, the nanocomposites thermoplastic polyester‐ether elastomer (TPEE) with phosphorous–nitrogen (P–N) flame retardants and montmorillonite (MMT) was prepared by melt blending.The fire resistance of nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL94) test. The result shows that the flame retardants containing P–N increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants just got UL94 V‐2 ranking, which resulted in the flaming dripping phenomenon. On the other hand, TPEE containing P–N flame retardant and organic‐modified montmorillonite (o‐MMT) achieved UL94 V‐0 rating for the special microstructure. The XRD and TEM morphology has demonstrated that the formation of multi‐ordered structure regarding restricted segmental motions at the organic–inorganic interface and stronger interactions between the clay mineral layers and the polymer chains. The structure was supported by the results of rheological properties and DSC analysis. The thermal degradation and char residue characterization was studied by thermal gravimetric analysis (TGA) and SEM‐EDX measurements, respectively. The TGA and SEM‐EDX have demonstrated that o‐MMT results in the increase of char yield and the formation of the thermal stable carbonaceous char. POLYM. COMPOS., 37:700–708, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
High‐performance hyperbranched poly(phenylene oxide)‐modified bismaleimide resin with high thermal stability, low dielectric constant, and loss was developed, which is made up of hyperbranched poly(phenylene oxide) (HBPPO), 4,4′‐bismaleimidodiphenylmethane (BDM), and o, o′‐diallylbisphenol A (DBA). The curing reactivity, morphology, and performance of BDM/DBA/HBPPO resin were systemically investigated, and similar investigations for BDM/DBA resin were also carried out for comparison. Results show that BDM/DBA/HBPPO and BDM/DBA resins have similar curing mechanism, but the former can be cured at lower temperature than the later; in addition, cured BDM/DBA/HBPPO resin with suitable HBPPO content has better thermal stability and dielectric properties (lower dielectric constant and loss) than BDM/DBA resin. The difference in macroproperties between BDM/DBA/HBPPO and BDM/DBA resins results from the different chemical structures and morphologies of their crosslinking networks. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A novel charring agent (CNCA‐DA) containing triazine and benzene ring, using cyanuric chloride, aniline, and ethylenediamine as raw materials, was synthesized and characterized. The effects of CNCA‐DA on flame retardancy, thermal degradation, and flammability properties of polypropylene (PP) were investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), and cone calorimeter test (CCT). The TGA results showed that CNCA‐DA had a good char forming ability, and a high initial temperature of thermal degradation; the char residue of CNCA‐DA reached 18.5% at 800°C; Ammonium polyphosphate (APP) could improve the char residue of APP/CNCA‐DA system, the char residue reached 31.6% at 800°C. The results from LOI and UL‐94 showed that the intumescent flame retardant (IFR) containing CNCA‐DA and APP was very effective in flame retardancy of PP. When the mass ratio of APP and CNCA‐DA was 2 : 1, and the IFR loading was 30%, the IFR showed the best effect; the LOI value reached 35.6%. It was also found that when the IFR loading was only 20%, the flame retardancy of PP/IFR can still pass V‐0 rating in UL‐94 tests, and its LOI value reached 27.1%. The CCT results demonstrated that IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), and mass loss (ML). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Two phosphorus‐containing phenolic amines, a 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based derivative (DAP) by covalently bonding DOPO and imine (SB) obtained from the condensation of p‐phenylenediamine with salicylaldehyde, and its analog (AP) via the addition reaction between diethyl phosphite and SB, were used to prepare flame‐retardant epoxy resins. The burning behaviors and dynamic mechanical properties of epoxy thermosets were studied by limited oxygen index (LOI) measurement, UL‐94 test, and dynamic mechanical analysis. The flame‐retardant mechanisms of modified thermosets were investigated by thermogravimetric analysis, Py‐GC/MS, Fourier transform infrared, SEM, elemental analysis, and laser Raman spectroscopy. The results revealed that epoxy thermoset modified with DAP displayed the blowing‐out effect during UL‐94 test. With the incorporation of 10 wt % DAP, the modified thermoset showed an LOI value of 36.1% and V‐0 rating in UL‐94 test. The flame‐retardant mechanism was ascribed to the quenching and diluting effect in the gas phase and the formation of phosphorus‐rich char layers in the condensed phase. However, the thermoset modified with 10 wt % AP only showed an LOI value of 25.7% and no rating in UL‐94 test, which was possibly ascribed to the mismatching of charring process with gas emission process during combustion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43953.  相似文献   

12.
A novel intumescent flame retardant (IFR), containing ammonium polyphosphate (APP) and poly(tetramethylene terephthalamide) (PA4T), was prepared to flame‐retard acrylonitrile‐butadiene‐styrene (ABS). The flame retardation of the IFR/ABS composite was characterized by limiting oxygen index (LOI) and UL‐94 test. Thermogravimetric analysis (TGA) and TGA coupled with Fourier transform infrared spectroscopy (TG‐FTIR) were carried out to study the thermal degradation behavior of the composite and look for the mechanism of the flame‐retarded action. The morphology of the char obtained after combustion of the composite was studied by scanning electron microscopy (SEM). It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA4T/APP/ABS (7.5/22.5/70) system increasing from 18.5 to 30% and passing UL‐94 V‐1 rating. Meanwhile, the TGA and TG‐FTIR work indicated that PA4T could be effective as a carbonization agent and there was some reaction between PA4T and APP, leading to some crosslinked and high temperature stable material formed, which probably effectively promoted the flame retardancy of ABS. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame‐retarded ABS composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
A novel flame‐retardant aluminum β‐carboxylethylmethylphosphinate [Al(CEP)] was synthesizedby a simple process. The effect of Al(CEP) on the curing of epoxy resin (EP) was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy. The flame retardancy and thermal properties of Al(CEP)/EP were analyzed by a limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electron microscopy (SEM) with energy‐dispersive X‐ray (EDX), gravimetric analyses, and DSC. Results disclosed that curing of EP is delayed by incorporating Al(CEP). The flexural strength of EP is reduced but the flexural modulus is increased by adding Al(CEP). Adding Al(CEP) depresses the decomposition of EP while leads to a increase in the glass transition temperature (Tg), in char formation and in flame retardancy of EP. EP containing 25 phr Al(CEP) provides LOI of 28.3% and passes UL‐94 V‐0 rating. SEM results show that the sample passing V‐0 rating can form the condensed char whereas porous char is observed from the sample failing in V‐0 rating after combustion. EDX analysis shows that the condensed char presents higher weight ratio of carbon to phosphorus than the porous char, indicating appropriate amount of Al(CEP) is necessary for formation of the stable char. POLYM. ENG. SCI., 55:657–663, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
A novel phosphorus‐ and nitrogen‐containing flame retardant (melamine phytate) was synthesized via the reaction between melamine and phytic acid. The chemical structure of melamine phytate (MPA) was confirmed by Fourier transform‐infrared spectra (FT‐IR) and elemental analysis. And the thermal behavior of MPA investigated by thermogravimetric analysis (TGA) demonstrates that MPA possesses a good char‐forming ability at high temperature. Besides, limiting oxygen index (LOI) and vertical burning tests (UL‐94) illustrate that polypropylene/melamine phytate/dipentaerythritol (PP/MPA/DPER) (70/22.5/7.5) can reach the LOI value of 28.5% and achieve V‐0 rating at the flame retardant loading of 30 wt%. Except that, the thermal weight loss of MPA and DPER in PP composites was investigated by TGA in detail. Moreover, the char residue of PP composite after combustion was systematically analyzed by FT‐IR, scanning electron microscope (SEM) and X‐ray photoelectron spectroscopy (XPS), which can further propose and confirm the flame retardant mechanism. POLYM. COMPOS., 36:1606–1619, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
In this work, flame‐retardant benzoxazine resins were prepared by copolymerization of bisphenol A based benzoxazine (BA‐a) and a phosphorous‐containing phenolic derivative (DOPO‐HPM). The curing behavior, thermal stability, and flame resistance of BA‐a/DOPO‐HPM composites were studied by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 test, and cone calorimeter. The DSC results indicated that DOPO‐HPM catalyzed the curing reaction because of its acidity. The TGA results revealed that the BA‐a/DOPO‐HPM thermosets possessed higher decomposition temperatures (T5%) and char yields than that of BA‐a. The combustion tests indicated that the flame retardant properties of BA‐a/DOPO‐HPM thermosets were enhanced. The BA‐a/DOPO‐HPM‐20 sample acquired the highest LOI value of 32.6% and UL94 V‐0 rating. Moreover, the average of heat release rate (av‐HRR), peak of heat release rate (pk‐HRR), average of effective heat of combustion (av‐EHC) and total heat release (THR) of BA‐a/DOPO‐HPM‐20 were decreased by 24.6%, 53.1%, 14.9%, and 22.1%, respectively, compared with BA‐a. The attractive performance of BA‐a/DOPO‐HPM blends was attributed to the molecular structure of DOPO‐HPM composed of DOPO group with excellent flame‐retardant effect and phenolic hydroxyl group with catalysis. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43403.  相似文献   

16.
A novel macromolecular silicon‐containing intumescent flame retardants (Si‐IFR) was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus‐silicon characterized by IR. Epoxy resins (EP) were modified with Si‐IFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). Twenty percentage of weight of Si‐IFR was doped into EP to get 27.5% of LOI and UL 94 V‐0. The degradation behavior of the flame retardant EP was studied by thermogravimetry, differential thermogravimetry, scanning electron microscopy, and X‐ray photoelectron spectroscopy analysis. The experimental results exhibited that when EP/Si‐IFR was heated, the phosphorus‐containing groups firstly decompose to hydrate the char source‐containing groups to form a continuous and protective carbonaceous char, which changed into heat‐resistant swollen char by gaseous products from the nitrogen‐containing groups. Meanwhile, SiO2 reacts with phosphate to yield silicophosphate, which stabilizes the swollen char. The barrier properties and thermal stability of the swollen char are most effective in resisting the transport of heat and mass to improve the flame retardancy and thermal stability of EP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The flammability characterization and synergistic flame‐retardant effect of Fe‐montmorillonite (Fe‐OMT) in the ethylene‐vinyl acetate/aluminum hydroxide (EVA/ATH) compounds were studied using limiting oxygen index (LOI), UL‐94 test, cone calorimeter, microscale combustion calorimetry (MCC), and thermogravimetric analysis (TGA). The results showed that addition of Fe‐OMT increases the LOI value and improves the UL 94 rating. Cone calorimeter data indicate that the addition of Fe‐OMT greatly reduced the heat release rate and carbon monoxide production rate. Furthermore a compact char residue formed on the surface of the sample with a suitable of Fe‐OMT during the combustion. The MCC results indicate that addition of Fe‐OMT reduced the heat release rate and catalyzed the decomposition of EVA. The TGA data showed further evidence that Fe‐OMT can catalyze carbonization reactions. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

18.
An aryl phosphinate dianhydride 1,4‐bis(phthalic anhydride‐4‐carbonyl)‐2‐(6‐oxido‐6H‐dibenz[c,e][1,2]‐oxaphosphorin‐6‐yl)‐phenylene ester (BPAODOPE) was synthesized and its structure was identified by FTIR and 1H‐NMR. BPAODOPE was used as hardener and flame retardant for preparing halogen‐free flame‐retarded epoxy resins when coupled with another curing agent. Thermal stability, morphologies of char layer, flame resistance and mechanical properties of flame‐retarded epoxy resins were investigated by thermogravimetric analysis, SEM, limiting oxygen index (LOI), UL‐94 test, tensile, and charpy impact test. The results showed that the novel BPAODOPE had a better flame resistance, the flame resistance and char yield of flame‐retarded epoxy resins increased with an increase of phosphorus content, tensile strength and impact strength of samples gradually decreased with the addition of BPAODOPE. The flame‐retarded sample with phosphorus contents of 1.75% showed best combination properties, LOI value was 29.3, and the vertical burning test reached UL‐94 V‐0 level, tensile strength and impact strength were 30.78 MPa and 3.53 kJ/m2, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
In this study, phospholipidated β‐cyclodextrin (PCD) was obtained by the condensation between β‐cyclodextrin and phenyl phosphonic acid dichloride, which was characterized by Fourier transform infrared (FTIR) spectra, 1H‐NMR, and thermogravimetric analysis (TGA). The thermal stability and flame retardancy of the poly(lactic acid) (PLA) blends [PLA–ammonium polyphosphate (APP)–PCD] were measured by TGA coupled to FTIR spectroscopy, vertical burning test (UL‐94), limiting oxygen index (LOI), and cone calorimetry tests. The results show that the mass ratio and loading amount of APP and PCD affected the properties of PLA. When the loading of APP and PCD was 30 wt % and the mass ratio of APP to PCD was 5:1, the highest LOI value of 42.6% (that of neat PLA was 19.7%) and a UL‐94 V0 rating were achieved, and the reduction of the total heat release was greater than 80%. Even when the total amount of APP and PCD was decreased to 20 wt % with the same mass ratio, the flame‐retardant PLA still can achieved a UL‐94 V0 rating. The improved performance was explained by the formation of an intumescent, continuous, contact char layer. Moreover, the reaction between APP and PCD contributed to the improvement of the thermal stability of the char residue. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46054.  相似文献   

20.
A novel phosphorus‐containing epoxy resin (EPN‐D) was prepared by addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and epoxy phenol‐ formaldehyde novolac resin (EPN). The reaction was monitored by epoxide equivalent weight (EEW) titration, and its structure was confirmed by FTIR and NMR spectra. Halogen‐free epoxy resins containing EPN‐D resin and a nitrogen‐containing epoxy resin (XT resin) were cured with dicyandiamide (DICY) to give new halogen‐free epoxy thermosets. Thermal properties of these thermosets were studied by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), thermal mechanical analyzer (TMA) and thermal‐gravimetric analysis (TGA). They exhibited very high glass transition temperatures (Tgs, 139–175°C from DSC, 138–155°C from TMA and 159–193°C from DMA), high thermal stability with Td,5 wt % over 300°C when the weight ratio of XT/EPN‐D is ≥1. The flame‐retardancy of these thermosets was evaluated by limiting oxygen index (LOI) and UL‐94 vertical test. The thermosets containing isocyanurate and DOPO moieties showed high LOI (32.7–43.7) and could achieve UL‐94 V‐0/V‐1 grade. Isocyanurate and DOPO moieties had an obvious synergistic effect on the improvement of the flame retardancy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号