首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interforce between the magnetic composite forward osmosis (FO) membranes and the magnetic draw solution was proposed to reduce the internal concentration polarization (ICP) of FO process, and realized the synergetic permeability improvement of resultant FO membranes. The key factor was the successful fabrication of the Fe3O4 magnetic nanoparticles (MNPs) with small‐size and narrow distribution via co‐precipitation method. The cellulose triacetate (CTA) magnetic composite FO membranes were fabricated using Fe3O4 as additive via in situ interfacial polymerization, and named CTA‐Fe3O4. Dynamic light scattering (DLS) and zeta results showed that the coated sodium oleate on the MNPs explained their reducing aggregation and the stability of various pHs. The MNPs' surface segregation during demixing process resulted in the improvement of hydrophilicity, Fe content and roughness of resultant CTA‐Fe3O4 composite FO membranes. Furthermore, the in situ interfacial polymerization resulted in the formation of the polyamide selective layer, and the CTA‐Fe3O4 membrane's N content was 11.02% to 11.12%. The permeability properties (FO and pressure retarded osmosis modules) were characterized using 1.0M NaCl and 100 mg/L Fe3O4 as draw solutions, respectively. The results indicated that the higher concentration of MNPs supplied more interforce and better FO permeability properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44852.  相似文献   

2.
The preparation of high‐dielectric‐constant (k) materials is important in the field of electronics. However, how to effectively use the function of fillers to enhance k is still a challenge. In this study, anisotropic graphene (GNS)–iron oxide (Fe3O4)/polyimide (PI) nanocomposite films with oriented GNSs were prepared by the in situ polymerization of 4,4′‐oxydianiline and pyromellitic anhydride in the presence of GNS–Fe3O4. Films of the precursors were fabricated, and this was followed by stepwise imidization under a magnetic field at a higher temperature to orient the magnetic sheets. The orientation of GNS–Fe3O4 and the relationships of the GNS–Fe3O4 content and measurement frequency with the dielectric properties of the GNS–Fe3O4/PI films were studied in detail. The dielectric property differences of the GNS–Fe3O4/PIs with GNS–Fe3O4 parallel or perpendicular to the film surface were not obvious, when the content of GNS–Fe3O4 was lower than 5 wt %. However, at the percolation threshold, the k values of GNS–Fe3O4/PI films with horizontal GNS–Fe3O4 were much higher than those of the other two kinds of films at 103 Hz; this was derived from the contribution of more effective microcapcitors parallel to the film surface. So, making the GNS–Fe3O4 parallel to the film surface greatly enhanced k of GNS–Fe3O4. However, switching the charges on the large lateral surface of the parallel GNSs with the electric field also caused a higher dielectric loss and the frequency dependence of k and the dielectric loss at low frequency. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43041.  相似文献   

3.
Template synthesis technique was employed to prepare magnetic polyaniline (PANI)/Fe3O4 composite microtubes using anodic aluminum oxide (AAO) membrane as template. Magnetic microtubes were obtained through in situ polymerization of aniline in the presence of Fe3O4 nanoparticles in the microchannels of template. A tubular structure was formed once when aniline was preferentially adsorbed and polymerized on the surface of channels wall. Electron microscope images demonstrated that the shape and size of guest (PANI/Fe3O4 composite microtubes) were strictly depended on those of the host (template channels). Magnetic force microscopy images showed that the PANI/Fe3O4 composite microtubes possessed reasonable magnetism and the magnetism distribution of microtubes was regular as distribution of template channels. Moreover, the magnetic response and oriented arrangement of PANI/Fe3O4 microtubes were fulfilled in the magnetic field. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Hybrid polyimide (PI)/titanium dioxide (TiO2) films were prepared by in situ polymerization and sol–gel and in‐sol methods (where in‐sol method indicates that in situ polymerization and the sol–gel method were used in the same samples). The mechanical and electrical properties were found to be sensitive to the processing methods and the dispersion of nano titanium dioxide (nano‐TiO2) in the PI matrix. For the PI/TiO2 films prepared by the in situ polymerization method, their tensile strength increased with increasing TiO2‐in situ (“TiO2‐in situ” is “the TiO2 nano‐particles prepared by in situ polymerization method”) concentration. However, the optimal corona lifetime of the PI/TiO2 films was 15 min at 20 kHz and 2 kV because of poor dispersion. For the PI/TiO2 films prepared by the sol–gel method, the corona lifetime reached 113 min because of superior dispersion and a tensile strength of about 19.63 MPa. A balance of mechanical and electrical performances was achieved with the in‐sol method. The corona‐resistant life of the PI/TiO2 films was 43 min, which was about six times longer than that of the neat PI. Their tensile strength was 83.5 MPa; these films showed no decrease in this value compared with the pure PI films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44666.  相似文献   

5.
Herein, the authors report the synthesis of electro-magnetic polyfuran/Fe3O4 nanocomposites using Fe3O4 magnetic nanoparticles of different content as nucleation sites via in situ chemical oxidation polymerization method. Surface, structural, morphological, thermal, electrical and magnetic properties of the nanocomposites were studied by FT-IR, UV-visible spectroscopies, XRD, FESEM, TGA, four probe, and VSM, respectively. The effect of Fe3O4 nanoparticles content on the electrical conductivity and magnetization of nanocomposites was studied. The obtained polyfuran and polyfuran/Fe3O4 nanocomposites were analyzed for their antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In addition, polyfuran/Fe3O4 nanocomposites have been investigated for application as electrochemical biosensor.  相似文献   

6.
A high surface, magnetic Fe3O4@mesoporouspolyaniline core‐shell nanocomposite was synthesized from magnetic iron oxide (Fe3O4) nanoparticles and mesoporouspolyaniline (mPANI). The novel porous magnetic Fe3O4 was obtained by solvothermal method under sealed pressure reactor at high temperature to achieve high surface area. The mesoporouspolyaniline shell was synthesized by in situ surface polymerization onto porous magnetic Fe3O4 in the presence of polyvinylpyrrolidone (PVP) and sodium dodecylbenzenesulfonate (SDBS), as a linker and structure‐directing agent, through ‘blackberry nanostructures’ assembly. The material composition, stoichiometric ratio and reaction conditions play vital roles in the synthesis of these nanostructures as confirmed by variety of characterization techniques. The role of the mesoporouspolyaniline shell is to stabilize the porous magnetic Fe3O4 nanoparticles, and provide direct access to the core Fe3O4 nanoparticles. The catalytic activity of magnetic Fe3O4@mesoporousPANI nanocomposite was evaluated in the cross‐coupling of aryl chlorides and phenols.  相似文献   

7.
In this study, the novel polyarylene ether nitrile containing carboxyl groups (CPEN)/Fe3O4 hybrids were synthesized via the solvent‐thermal route. The SEM and TEM images showed that the surface of functionalized Fe3O4 hybrids (CPEN‐f‐Fe3O4) became rough and coated with a thin polymer layer successfully. Chemical bonds were formed between the carboxyl groups and Fe3O4 spheres, which were characterized by FTIR and XRD. Series of PEN composite films were prepared through solution‐casting method with different contents of CPEN‐f‐Fe3O4 hybrids and raw Fe3O4 spheres. The SEM images showed that the CPEN‐f‐Fe3O4 hybrids became much more dispersible and compatible in PEN matrix than that of raw Fe3O4 spheres, which was further confirmed by rheological study. The magnetic analysis showed that the saturation magnetization of composites films increased with the increase of CPEN‐f‐Fe3O4 hybrids loading content. The results of thermogravimetric and mechanical study exhibited that the composite films had good thermal stability and mechanical property. POLYM. COMPOS., 36:1325–1334, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Magnetic nanocomposites have attracted great attention as adsorbents for the removal of water pollutants, which respond to an external magnet that is used to remove both pollutants and composite nanomaterial traces from water. They are environmentally friendly and effective adsorbents for water treatment. In this respect, a simple in situ preparation method was used to prepare cryogel powder composite based on Fe3O4.Cu2O.Fe3O4 nanomaterials. The ionic cryogel based on 2‐acrylamido‐2‐methylpropane sulfonate sodium salt and styrene sulfonate sodium salt was prepared by crosslinking polymerization at low temperature. The new magnetic nanoparticles based on Fe3O4.Cu2O.Fe3O4 were successfully prepared inside the cryogel networks by a simple reduction–coprecipitation method based on reaction of Fe3+ with sodium sulfite and Cu2+ in the presence of hydroxylamine and ammonia solution. The thermal stability, accurate Fe3O4.Cu2O.Fe3O4 content, magnetic properties, crystal lattice structure, particle sizes and morphology of the prepared cryogel composite were evaluated. The optimum conditions such as pH, contact time, adsorbate concentrations, adsorption equilibrium and adsorption kinetics were investigated to determine the efficiency of the prepared composite as an adsorbent to remove toxic methylene blue (MB) pollutant from aqueous solution. The data for MB adsorption confirmed the high ability of the prepared composite to remove more than 4.696 mmol L?1 of MB from water during 6 min. The regeneration and reuse experiments showed excellent data for the synthesized new dye as an effective adsorbent for water treatment. © 2018 Society of Chemical Industry  相似文献   

10.
The formation of Fe3O4 nanoparticles by hydrothermal process has been studied. X‐ray Diffraction measurements were carried out to distinguish between the phases formed during the synthesis. Using the synthesized Fe3O4 nanoparticles, poly(vinyledene fluoride)‐Fe3O4 composite films were prepared by spin coating method. Scanning electron microscopy of the composite films showed the presence of Fe3O4 nanoparticles in the form of aggregates on the surface and inside of the porous polymer matrix. Differential Scanning calorimetry revealed that the crystallinity of PVDF decreased with the addition of Fe3O4. The conductitivity of the composite films was strongly influenced by the Fe3O4 content; conductivity increased with increase in Fe3O4 content. Vibration sample magnetometry results revealed the ferromagnetic behavior of the synthesized iron oxide nanoparticles with a Ms value of 74.50 emu/g. Also the presence of Fe3O4 nanoparticles rendered the composite films magnetic. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Novel polyimide‐γ‐Fe2O3 hybrid nanocomposite films (PI/γ‐Fe2O3) has been developed from the poly(amic acid) salt of oxydianiline with different weight percentages (5, 10, 15 wt %) of γ‐Fe2O3 using tetrahydrofuran (THF) and N,N‐dimethylacetamide (DMAc) as aprotic solvents. The prepared polyimide‐γ‐Fe2O3 nanocomposite films were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), transmission electron micrograph (TEM), X‐ray diffraction (XRD), 13C‐NMR, and thermal analysis (TGA/DSC) techniques. These studies showed the homogenous dispersion of γ‐Fe2O3 in the polyimide matrix with an increase in the thermal stability of the composite films on γ‐Fe2O3 loadings. Magnetization measurements (magnetic hysteresis traces) have shown very high values of coercive force indicating their possible use in memory devices and in other related applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 834–840, 2007  相似文献   

12.
Multifunctional polymers have wide applications in smart materials. In this study, the multifunctional polymer (hydrophilic graphene-Fe3O4-PVA, GFP composite films) were synthesized by mixing with hydrophilic graphene (HG), ferrous ammonium sulfate, and ferric chloride in PVA solution through one-pot coprecipitation method. GFP composite films were characterized by XRD, FT-IR. Their morphology and particle size of Fe3O4 in GFP composite film were observed by TEM, SEM, and AFM. The results indicated that the morphology of Fe3O4 in GFP could be modulated from sphere shape to rod structure by the loading quantity of HG. Besides, many properties of GFP composite films were investigated. Firstly, GFP composite films demonstrated the fast magnetic response and high thermal stability. Secondly, the introduction of HG not only simultaneously enhanced the stiffness and ductility of GFP composite films, but also improved their flame retarding performance. Finally, HG regulating effect for the morphology of Fe3O4 in GFP and improvement mechanism of HG for mechanical performance of GFP composite films were illustrated. Both of them might be contributed to the hydrogen bonds effect among Fe3O4, PVA, and HG. Thus, these multifunctional GFP composite films can be applicable as the basis of fabricating smart materials in different fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48174.  相似文献   

13.
Summary Polypyrrole (PPy) composite films with different contents of Fe3O4 were prepared by in-situ polymerization of pyrrole in aqueous solutions. The dependence of dc current changes on the response of the samples exposure to NH3 vapor has been investigated. The results shows the composite films are more stable than the pristine ones after being exposed to NH3 vapor. Meanwhile, the response time was reduced with increasing the Fe3O4 content in the films. The results might be originated from the structural changes in the PPy films caused by the addition of Fe3O4.  相似文献   

14.
A novel series of composites of polyarylene ether nitrile terminated with phthalonitrile (PEN‐t‐Ph) filled with hybrid Fe3O4 nanospheres (h‐Fe3O4) was prepared via in situ composition. Based on the cross‐linking interactions between the phthalonitrile at the end of PEN‐t‐Ph molecular chains and the phthalonitrile on the surface of h‐Fe3O4 particles to form phthalocyanine ring, it was shown that the PEN‐t‐Ph/h‐Fe3O4 system had superior interfacial compatibility and the h‐Fe3O4 particles were locked in the matrix resin. These results had been confirmed by scanning electron microscope analysis. By orthogonal experiments and statistic analysis, the optimal conditions of cure temperature, type of h‐Fe3O4 and content of h‐Fe3O4 had been determined. Meanwhile, the results of range analysis and variance analysis indicated that the cure temperature had great effects on the thermal properties. Thermal studies revealed that the glass transition temperature of PEN‐t‐Ph/h‐Fe3O4 cured at 320°C was 214.7°C, increased by about 40°C compared to the PEN‐t‐Ph/h‐Fe3O4 without heat treatment, and the temperature corresponding to the weight loss of 5 wt % was increased by about 20°C. Mechanical measurements indicated that PEN‐t‐Ph/h‐Fe3O4 cured at 320°C possesses excellent mechanical properties with tensile strength of 93.33 MPa and tensile modulus of 2414.05 MPa, 9.91 MPa, 355.76 MPa higher than pure PEN‐t‐Ph film cured at 320°C, and 13.26 MPa, 397.90 MPa higher than PEN‐t‐Ph/h‐Fe3O4 without heat treatment. Most importantly, the presence of h‐Fe3O4 particles endows PEN‐t‐Ph/h‐Fe3O4 system with good magnetic property. Thus, PEN‐t‐Ph/h‐Fe3O4 cured at 320°C may have potential applications in field of magnetic materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40418.  相似文献   

15.
In this research, the thermoresponsive composite latex particles were prepared via W/O miniemulsion polymerization. Fe3O4 nanoparticles were homogeneously dispersed inside the poly(NIPAAm‐co‐MAA) latex particles. In the first step, PAA oligomers were used as stabilizers to produce a stable water‐based Fe3O4 ferrofluid, which could mix well with the water‐soluble monomers. In the second step, the Fe3O4/poly(NIPAAm‐co‐MAA) composite latex particles were synthesized via W/O miniemulsion polymerization. This polymerization proceeded in cyclohexane at room temperature, with Span80 as the emulsifier, NIPAAm as the thermoresponsive monomer, MAA as a comonomer with ? COOH functional groups, and APS/SMBS as the redox initiator system. The distribution of Fe3O4 nanoparticles inside the composite latex particles was expected to be homogeneous. The nucleation and morphology of the composite latex particles were mainly controlled by the concentration of the surfactant, Span80, in cyclohexane. The properties of the composite latex were examined with several instruments such as DSC and TGA. Finally, the superparamagnetic and thermoresponsive characteristics of this functional composite latex were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3987–3996, 2006  相似文献   

16.
Polyimide/Al2O3 (PI/Al2O3) nanocomposite films based on pyromellitic dianhydride and 4,4′‐oxydianiline were fabricated by adding different proportions of nano‐Al2O3 inorganic particles via in situ polymerization. Microstructural analysis by scanning electron microscope (SEM) showed that the inorganic particles were homogenously dispersed in the PI matrix when mixed with appropriate amount of nano‐Al2O3. Fourier transform infrared spectroscopy and X‐ray diffraction analysis were also used to investigate the effect of nano‐Al2O3 on the polymerization process. The obtained composite films and pure film were characterized by thermogravimetry analysis, and the experimental results indicated that when comparing with pure film, the nanocomposite films displayed a better thermal stability than the pure one. Moreover, results also showed that the thermal stability of composite films steadily improved with increased content of nano‐Al2O3 particle. The electrical property test demonstrated that the composite films performed improving electrical breakdown strength and corona resistance. The microstructure changes of pure film and PI/Al2O3 nanocomposite films during corona aging have been analyzed by SEM. POLYM. COMPOS., 37:763–770, 2016. © 2014 Society of Plastics Engineers  相似文献   

17.
In this study, oil‐based magnetic Fe3O4 nanoparticles were first synthesized by a coprecipitation method followed by a surface modification using lauric acid. Polystyrene/Fe3O4 composite particles were then prepared via miniemulsion polymerization method using styrene as monomer, 2,2′‐azobisisobutyronitrile (AIBN) as initiator, sodium dodecyl sulfate (SDS) as surfactant, hexadecane (HD) or sorbitan monolaurate (Span20®) as costabilizer in the presence of Fe3O4 nanoparticles. The effects of Fe3O4 content, costabilizer, homogenization energy during ultrasonication, and surfactant concentration on the polymerization kinetics (e.g., conversion), nucleation mechanism, and morphology (e.g., size distributions of droplets and latex) of composite particles were investigated. The results showed that at high homogenization energy, an optimum amount of SDS and hydrophobic costabilizer was needed to obtain composite particles nucleated predominately by droplet nucleation mechanism. The morphology of the composite particles can be well controlled by the homogenization energy and the hydrophobicity of the costabilizer. The magnetic composite particles can be made by locating Fe3O4 inside the latex particles or forming a shell layer on their PS core surface depending on the aforementioned polymerization conditions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A novel biodegradable magnetic‐sensitive shape memory poly(?‐caprolactone) nanocomposites, which were crosslinked with functionalized Fe3O4 magnetic nanoparticles (MNPs), were synthesized via in situ polymerization method. Fe3O4 MNPs pretreated with γ‐(methacryloyloxy) propyl trimethoxy silane (KH570) were used as crosslinking agents. Because of the crosslinking of functionalized Fe3O4 MNPs with poly(?‐caprolactone) prepolymer, the properties of the nanocomposites with different content of functionalized Fe3O4 MNPs, especially the mechanical properties, were significantly improved. The nanocomposites also showed excellent shape memory properties in both 60 °C hot water and alternating magnetic field (f = 60, 90 kHz, H = 38.7, 59.8 kA m?1). In hot water bath, all the samples had shape recovery rate (Rr) higher than 98% and shape fixed rate (Rf) nearly 100%. In alternating magnetic field, the Rr of composites was over 85% with the highest at 95.3%. In addition, the nanocomposites also have good biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45652.  相似文献   

19.
Ultrasonically initiated miniemulsion polymerization of styrene was conducted in the presence of Fe3O4 nanoparticles. Stable polystyrene (PS)/Fe3O4 nanocomposite emulsions were prepared and magnetic PS/Fe3O4 composite particles were obtained through magnetic separation. The whole procedure comprised two steps. First, Fe3O4 nanoparticles were dispersed in the monomer phase with the aid of stabilizer Span‐80. Second, miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was carried out under an ultrasonic field in the absence of a chemical initiator. The affecting factors, including stabilizer concentration, surfactant concentration, hexadecane concentration and the amount of Fe3O4, were systematically studied. Stabilizer concentration, surfactant concentration and hexadecane concentration strongly affected the formation of the coagulation. The least amount of coagulation was formed at 2.5 wt% Span‐80 concentration. The addition of Fe3O4 nanoparticles drastically increased the polymerization rate owing to the fact that Fe3O4 nanoparticles increased the acoustic intensity and Fe2+ reacted with H2O2 to produce hydroxyl radicals and increase the number of radicals. The increase in cosurfactant concentration and power output also increased the polymerization rate. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Magnetic Fe3O4/waterborne polyurethane nanocomposites were synthesized based on waterborne polyurethane (WPU) and amino-functionalized Fe3O4 by in situ polymerization. The Fe3O4 nanoparticle was found to be uniformly distributed in Fe3O4/WPU nanocomposites with linear or crosslinked structure. In addition, the formation mechanism and magnetic conduction mechanism of stable inorganic–organic nanocomposites were discussed. The experimental results showed that the thermal stability, magnetic, and mechanical properties of magnetic Fe3O4/waterborne polyurethane nanocomposites were improved by amino functionalized Fe3O4. Furthermore, the defoaming property of the emulsion and the hydrophobic property of magnetic Fe3O4/waterborne polyurethane nanocomposites were improved by the 1-hexadecanol-terminated prepolymer. What more, polycaprolactone (PCL)-based Fe3O4/WPU nanocomposites have excellent mechanical properties (The tensile strength is over 30 MPa, the elongation rate is above 300%.) and magnetic properties. Magnetic Fe3O4/waterborne polyurethane nanocomposites will be used in the field of hydrophobic and microwave absorbent materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48546.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号