首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract

Influences of silicon content on the microstructure and corrosion resistance of a Fe–2·5 wt-%B alloy have been investigated by using scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Si can change the microstructure from hypereutectic to eutectic and furthermore, enhance the corrosion resistance of the alloy in molten zinc. The high corrosion resistance of the alloy was mainly attributed to the eutectic phase increase and solubility of Si in α phase enhancement. The corrosion of these alloys in liquid zinc was controlled by the diffusion mechanism. The reaction products are FeZn6·67, Fe5SiB2 and FeSi. The reaction layer further prevents the diffusion of zinc atoms into the base material and delays the reaction between the substrate and the molten zinc efficiently.  相似文献   

2.
A systematic study of the isothermal corrosion testing and microscopic examination of Fe3Al alloy in liquid zinc containing small amounts of aluminum (less than 0.2 wt.%) at 450 °C was carried out in this work. The results showed the corrosion of Fe3Al alloy in molten zinc was controlled by the dissolution mechanism. The alloy exhibited a regular corrosion layer, constituted of small metallic particles (diameter: 2-5 μm) separated by channels filled with liquid zinc, which represented a porosity of about 29%. The XRD result of the corrosion layer formed at the interface confirmed the presence of Zn and FeZn6.67. The corrosion rate of Fe3Al alloy in molten zinc was calculated to be approximately 1.5 × 10−7 g cm−2 s−1. Three steps could occur in the whole process: the superficial dissolution of metallic Cr in the corrosion layer, the new phase formation of FeZn6.67 and the diffusion of the dissolved species in the channels of the corrosion layer.  相似文献   

3.
A thermodynamic model based on the ‘Macroscopic Atom’ approach is proposed to assess the effect of alloying element segregation on the adhesion of metallic coating on metallic substrate. The interfaces that occur in hot-dip galvanized steels are considered, which include: Zn/Fe, Zn/Fe2Al5, Zn/FeZn13, FeZn13/Fe2Al5, and Fe2Al5/Fe. The effect of the alloying element on the work of adhesion of these interfaces is investigated, which includes Mg, Al, Si, P, Ti, V, Cr, Mn, Fe, Ni, Zn, Nb, Mo, Sn and Bi. Among these elements, Bi, Sn and Mg are predicted to decrease the work of adhesion of the Zn/Fe interface, whereas P, Nb, Mo, V, Ti and Ni tend to enhance this adhesion. The effect of element M (M = Al, Si, Cr, Mn) is positive when it exists in the zinc coating or negative when it occurs in the iron substrate. Among these interfaces, the Fe2Al5/Fe interface with a value of 3.8 J m−2 is the strongest, whereas the Zn/FeZn13 interface with of a value of 1.7 J m−2 is the weakest. Delamination of the coating upon deformation is predicted to occur along the FeZn13/Fe2Al5 and Zn/Fe2Al5 interfaces. This agrees with microscopic observations of hot dip galvanized steel after tensile testing.  相似文献   

4.
采用XRD,SEM和PCT测试研究了(V30Ti35Cr25Fe10)97.5Si2.5(at%)合金的组织结构与吸放氢性能。结果表明:合金由BCC相和C14 Laves相组成,BCC相含量为75%,晶胞参数为α=0.3021nm,Laves相含量为25%,晶胞参数为α=0.4920nm和c=0.7996nm。由于含有大量的Laves相,合金具有良好的活化性能,室温下不需孕育期就可以快速吸氢,5min内达到吸氢饱和状态,饱和吸氢量达到2.98%(质量分数,下同)。在一定氢压下,合金的容量可由合金中BCC相和Laves相的容量按组分的含量进行线性组合而成。  相似文献   

5.
In order to investigate the effects of boron concentration on the corrosion resistance of Fe-B alloys in molten zinc, Fe-B alloys, with the boron concentrations of 1.5 wt.%, 3.5 wt.% and 6.0 wt.% respectively, were dipped into a pure molten zinc bath at 460 °C and kept in different time intervals. The results show that, in comparison with 1Cr18Ni9Ti stainless steel, Fe-B alloy with 3.5 wt.%B exhibits excellent corrosion resistance, due to the dense continuous network or parallel Fe2B phase which hinders the Fe/Zn interface reaction in Fe-B alloys. The energy dispersive spectrum (EDS) results indicate that the coarse and compact δ phase with the length about 40 μm generates near the matrix of Fe-B alloy and massive ζ phase occurs close to the liquid zinc. The corrosion process includes Fe/Zn reaction and the isolation and fracture of Fe2B. The failure of boride is mainly caused by the microcrack.  相似文献   

6.
采用大气等离子喷涂技术成功在Fe普碳钢基材上制备了含有不同质量分数Al2O3-13%Ti O2颗粒的Fe基非晶复合涂层,其中Fe基非晶相成分为Fe71Cr5B4Si4Ni3Mo3W10(wt%),并对涂层的微观结构、显微硬度和耐蚀性能进行了研究。在Fe基非晶相与Al2O3-13%Ti O2陶瓷相界面观察到Fe、Ti、W、Al和O元素的互扩散现象,这种微区冶金结合减少了由于第二相的加入导致的涂层孔隙并增加了相间的结合强度。当加入的Al2O3-13%Ti O2质量分数≥16 wt%时,涂层的显微硬度升高≥20%;复合非晶涂层在10 wt%Na OH溶液中的耐腐蚀性能高于1Cr18Ni9Ti不锈钢。  相似文献   

7.
研究了四种不同Mn含量的铁锰二元合金在450℃液锌中的腐蚀行为,探讨了Mn对铁锌反应的影响规律。结果表明,铁锰二元合金在液锌中的腐蚀属于溶解性腐蚀。随着锰含量的增加,腐蚀速率有较大变化。含锰量为10wt%的合金,其腐蚀速率为5.79×10-3g.cm-2.h-1,含锰量为15wt%的合金,其腐蚀速率为3.64×10-2.gcm-2.h-1。锰含量为10wt%时,腐蚀产物由致密的δ相层和块状的ζ相层组成,致密的较厚的δ相层的存在,降低了铁锌反应速率,合金表现出较好的耐液锌腐蚀能力,而锰含量为15wt%时,腐蚀产物由大量疏松的颗粒状ζ相分布在液锌相中组成,疏松的组织恶化了合金的耐液锌腐蚀能力。  相似文献   

8.
Abstract

This paper aims to investigate the hot corrosion resistance of high velocity oxy-fuel (HVOF) sprayed cobalt based (Stellite-6) and nickel based (Ni–20Cr) coatings deposited on the superalloy Superni-718 (Ni–19Cr–18˙5Fe–5˙13Ta–3˙05Mo–0˙9Ti–0˙5AI–0˙18Mn–0˙18Si–0˙15Cu–0˙04C) in the Na2SO4–60%V2O5 salt environment at 900°C under cyclic conditions. The X-ray diffractometry, scanning electron microscopy/energy dispersive analysis and electron probe microanalyser techniques were used to study the corrosion products with respect to their morphology, phase composition and element concentration. The thermogravimetric technique was used to establish the kinetics of corrosion. The bare alloy underwent severe hot corrosion attack. The Ni–20Cr coating shows excellent hot corrosion resistance with negligible spallation, whereas Stellite-6 coating reveals less hot corrosion resistance and more spallation. The hot corrosion resistance of Ni–20Cr coating has been attributed to the formation of oxides of chromium, nickel and spinel of nickel chromium. The oxides of silicon, chromium, cobalt and spinels of cobalt–chromium and nickel–chromium have contributed for hot corrosion resistance of Stellite-6 coatings.  相似文献   

9.
Fe70Cr10P13C7是一种可形成非晶态的合金,它除具有比一般结构钢高得多的断裂强度外,还具有特别突出的耐腐蚀性能。用2~5kw连续波CO2激光在40Cr钢基体上首先获得晶态的Fe70Cr10P13C7宽带熔覆层,而后获得多道搭接的厚约0.2mm的非晶层。该非晶层动电位极化曲线表明,非晶态Fe70Cr10P13C7的耐腐蚀性高于1Cr18Ni9Ti不锈钢和加Cr的Ni-Nb非晶合金。  相似文献   

10.
CoMoCrSi alloys, mostly known as Tribaloy® family, combine well-known outstanding properties in terms of wear and corrosion resistance as well as in terms of mechanical strength. Compared to other wear resistant alloys, their performance is due to the presence of hard Laves phases rather than intermetallic carbides. Among the Tribaloy family, the T-800 alloy offers the best performance as a result of a higher amount of primary Laves phases. However, as a consequence of the brittle nature of these hard phases, the deposited alloy may present a relatively low resistance to crack initiation and propagation, particularly in laser cladding processing where thermal stresses are significant. A reduction in the volume fraction of these hard phase may be achieved by replacing some of the Laves phase components in the alloy (Co, Mo, Si) by Ni (T-900 alloy). Alternatively, it has been suggested that the addition of Fe could also lead to a significant reduction. The Fe addition can easily be accomplished in laser cladding process by dilution of the T-800 coating with the steel substrate. In this work a comparative study of microstructure, hardness and cracking susceptibility of low and high diluted T-800 and T900 coatings deposited by laser cladding is presented. A lower cracking ratio is obtained for the T-900 coatings at the cost of a lower hardness and wear resistance. No noticeable effect on the cracking susceptibility of the T-800 is found due to dilution with the substrate. However a change in its microstructure is observed giving superior hardness and wear resistance.  相似文献   

11.
In the present study, the quaternary Ni–Mo–Cr–P alloy coatings were deposited on copper alloy by an electroless deposition process. Crystallization behavior and the effect of heat‐treatment on hardness and corrosion resistance of Ni–Mo–Cr–P deposits were detailedly investigated. X‐ray diffraction (XRD) analysis shows that as‐deposited Ni–Mo–Cr–P coatings are Ni–Mo–Cr–P solid solution and mixed crystal structure; the trend of microcrystallinity increases with the introduction of additional types of metal element; Ni–Mo–Cr–P alloy coatings start to occur in the crystallization with the heat‐treatment temperature increasing. With an increase in the annealing temperature, the hardness improves and reaches the maximum value at 500 °C. Further, it is found that Ni–Mo–Cr–P coatings have superior corrosion resistance than Ni–P and Ni–Mo–P deposits after the analysis of electrochemical measurements. Moreover, corrosion resistance increases before annealed at 400 °C, but heat‐treatment at higher temperatures has a negative effect on the corrosion resistance of Ni–Mo–Cr–P alloy coatings.  相似文献   

12.
在Cr、Fe、Ni、Al、Si纯粉末中添加非等摩尔比的Cu元素混合后压制成坯,采用激光自蔓延烧结制备CrFeNiAlSiCux(x=0-1.2)高熵合金。通过OM、XRD、SEM和EDS、维氏显微硬度计、磨粒磨损机及电化学工作站进行表征,分析物相结构、显微组织、密度和孔隙率、硬度、耐磨及耐蚀性能。结果表明:合金中BCC和FCC两相共存,随着Cu元素添加,FCC相增多,但BCC相仍多于FCC相,合金是典型树枝晶组织并伴有许多菊花状的组织,菊花状组织主要含有Cr、Fe、Si、Ni元素,枝晶间组织主要含有Cu元素。CrFeNiAlSiCu0.4综合性能最佳,显微硬度最大,为908.68 HV,单位面积磨损量最小,为48 mg·cm-2,腐蚀电流最小,为0.4100 μA/cm-2,腐蚀电位最大,为-149.264 mV。  相似文献   

13.
Abstract

To combat liquid metal corrosion from lead–bismuth eutectic coolant in the fuel cladding and coolant piping of generation IV fast fission reactors, a composite that employs a Fe–Cr–Si steel layer weld clad on a structural layer of alloy T91 (Fe–9Cr–1Mo) is being developed. Diffusion of Si away from the cladding during service can compromise corrosion resistance, whereas carbon redistribution will affect mechanical properties and phase stability. Diffusion of silicon and carbon in a manufactured sample of the composite has been investigated both experimentally and by modelling. The diffusion coefficient for silicon in the T91/Fe–12Cr–2Si system was found to be 1·36 × 10?12 cm2 s?1 at 650°C, implying that concentration in the clad layer should not drop below 1·25%Si at a distance of 51 μm from the interface after 50 years' service at 650°C. The rapid carbon diffusion observed should be helpful during processing and operation. The two layers will have similar properties once carbon diffuses into the cladding, reducing the probability of mechanical property mismatch based errors during processing. The increased hardness of the carbon enriched clad layer will result in higher strength during operation, reducing the likelihood of damage or abrasion.  相似文献   

14.
The corrosion behavior of different alloys and the electrical conductivity of the growing corrosion scales was investigated under simulated and real molten carbonate fuel cell conditions. The corrosion of the usually used NiO cathode material was also investigated. In several exposure tests in oxidizing atmospheres, the FeCrMnNi steel 1.3965 showed a higher corrosion resistance to the aggressive carbonate media than the FeCrNi alloy 1.4404 (SS316L). This superior corrosion resistance is explained by the formation of a mixed (Fe,Ni,Mn)xCr3‐xO4 spinel layer, which reduces the outward diffusion of iron ions more than the mixed (Fe,Ni)Cr2O4 spinel formed on austenitic FeCrNi steels. Oxide debris, which spalls off the current collectors, was investigated by XRD. The corrosion scales spalled off mainly at the curved area of the current collector and not at the cathode/current collector interface. The debris was strongly magnetic and consisted of several, in some cases lithiated iron oxides, whereby α‐Fe2O3 (hematite), γ‐Fe2O3 (maghemite) and Fe3O4 (magnetite) formed most of the debris. The investigations of the electrical conductivity of the corrosion scales have shown that the electrical conductivity is limited by the inner, Cr‐containing oxide of the multi‐layered corrosion scale. Cr‐rich alloys which contain more that 20 wt.% Cr showed extremely high ohmic resistance of the corrosion scale, much higher than that of alloys containing less than 20 wt.% Cr due to the formation of highly conductive mixed spinel layers. Small additions of Al in the alloy increased the ohmic resistance of the corrosion scale by many orders of magnitude. Corrosion tests in the fuel environment showed, that common uncoated stainless steels are not suitable for the use as anodic current collectors. The corrosion resistance in the anodic gas atmosphere is determined by the Cr and the Ni contents of the alloy. Only the model alloy NKK which contains 45 wt.% Ni and 30 wt.% Cr showed an acceptable corrosion resistance. The NiO dissolution and the Ni precipitation was investigated by single cell tests. These tests showed, that the replacement of the metallic Ni by an Al support (which is necessary to avoid cracks inside the ceramic) decreases the amount of metallic Ni in the ceramic matrix significantly. Therefore shorting of a fuel cell having a NiO cathode and a LiAlO2 matrix with an Al support for the mechanical support is not expected in the target lifetime of 40 000 h. The double layer LiCoO2‐NiO cathode also showed a significant reduction in Ni precipitation after testing. Due to the improvements and development in materials the MCFC‐lifetime has been trebled in the last few years.  相似文献   

15.
研究了在 2 0钢和不锈钢基材上 ,利用双层辉光离子渗金属技术进行Ni Cr Mo Cu多元共渗表面合金化 ,采用电化学方法对两种基材表面形成的渗层在 5 %HCl中的腐蚀性能进行了测定。结果表明 :在两种基材上都能得到类似于源极HastelloyC - 2 0 0 0合金的表面合金渗层 ,在不锈钢表面上形成的渗层的耐蚀性能接近HastelloyC - 2 0 0 0合金并且优于Alloy 5 9合金 ,在 2 0钢表面上形成的渗层耐蚀性能优于不锈钢Cr18Ni9  相似文献   

16.
Determination of resistance to stress corrosion cracking (SCC) of high-alloy special steels in chloride-containing aqueous media The 18 Cr 10 Ni(Mo) based stainless steels have been continually improved by raising the Cr, Ni and Mo contents. The behavior of these high-alloy steels towards SCC was determined in test media generally used in practice since the question of the resistance to stress corrosion cracking (SCC) had still remained unanswered to a large extent. SCC tests on U-bend samples in boiling 62% CaCl2 solution showed a good differentiation depending on the Ni and Mo contents. With increasing Ni content, the susceptibility of special high-alloy steels to SCC is shifted towards longer service lives, alloys containing ≧ 42% by weight of Ni being resistant. High-Mo special alloy steels are more resistant to SCC than low-Mo special alloy steels. These results could be confirmed by tests carried out on circular cross section samples in boiling 62% CaCl2 solution under constant load and potentiostatic control. The free corrosion potentials recorded for 25% Ni special alloy steel and Ni-based alloys are within the potentiostatically determined range of insusceptibility to SCC. The high-Mo special alloy steel X 2 NiCrMoCu 25 20 6 (1.4529) shows the same critical SCC potential on the anodic side as the Ni alloy NiCr21 Mo (2.4858). Superferrit X 1 CrNiMoNb 28 4 2 (1.4575) and austenitic ferritic steel X 2 CrNiMoN 22 5 (1.4462) showed that the SCC behavior was unsatisfactory in both tests as in the case of steel X 10 CrNiMoTi 18 10 (1.4571). Tests in boiling 4 m NaCl showed no SCC, not even under the aggrevated test conditions in the test set-up. The great influence of the oxygen content was demonstrated in tests carried out in the autoclave with defined oxygen and chloride concentrations. The resistance of the steels to SCC decreases under air-saturated conditions (8 … 10 ppm O2) whereas the chloride concentration (200 and 2000 ppm Cl?) does not exercise an important influence. U-bend samples should be given preference to Erichsen samples for SCC tests. SCC break characteristics could be determined metallographically and by scanning electron microscope.  相似文献   

17.
采用电化学极化曲线和电化学阻抗(EIS)测试方法研究Fe_(41)Co_7Cr_(15)Mo_(14)C_(15)B_6Y_2块体非晶合金在0.5,1,2以及4 mol/L HCl溶液中的腐蚀行为,并比较了1 mol/L HCl溶液中非晶合金和不锈钢的腐蚀行为.极化曲线测试结果表明,Fe_(41)Co_7Cr_(15)Mo_(14)C_(15)B_6Y_2块体非晶合金在各种浓度的HCl溶液中都具有很好的耐蚀性,阳极极化曲线表现出明显的钝化特征.随着HCl溶液浓度的增大,其耐蚀性能逐渐下降.在1 mol/L HCl溶液中,非晶合金的自腐蚀电位高于不锈钢,自腐蚀电流密度比不锈钢小1个数量级.EIS结果显示,在开路电位下,Fe_(41)Co_7Cr_(15)Mo_(14)C_(15)B_6Y_2非晶合金和不锈钢的Nyquist图均由单一的容抗弧构成,但非晶合金的电化学转移电阻Rt比不锈钢的大2个数量级,这一结果与极化曲线结果一致,说明非晶合金在HCl溶液中的耐蚀性能优于不锈钢.  相似文献   

18.
Formation of martensite and influence of the latter on stress corrosion cracking of chromium nickel steels Martensite formation depends from alloy composition, deformation and undercooling. By contrast to an industrial alloy corresponding to (DIN) X 10 CrNiTi189 a pure Fe 19 Cr 10 Ni alloy becomes partially martensitic upon deformation and quenching to ?190 °C. Undercooling and subsequent deformation give rise to the addition of deformation and quenching martensite. The formation of α′-martensite is largely suppressed by addition of 2% Mo. Since corrosion resistance in aqueous MgCl2 solutions increases with the α′-martensite contents, cracks grow predominantly along the martensite plates. Addition of molybdenum reduces stress corrosion resistance because of the suppression of martensite formation. In this type of alloy cracking is intercrystalline nature.  相似文献   

19.
采用超音速火焰喷涂技术沉积含3种不同(Mo+B)/(Ni+Cr)质量比(1:1,2:1和3:1)的Mo-B-Ni-Cr球磨复合粉末以原位反应制备获得MoB/NiCr涂层。采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分析了MoB/NiCr涂层的组织结构和物相。同时讨论了不同(Mo+B)/(Ni+Cr)质量比对涂层的组织结构、硬度、结合强度和耐腐蚀性能的影响。研究结果表明,(Mo+B)/(Ni+Cr)质量比为1:1的MoB/NiCr涂层孔隙率最低及涂层厚度最大。在3种涂层中均原位反应生成了Mo2NiB2三元硼化物,且随着(Mo+B)/(Ni+Cr)质量比的增加,涂层中三元硼化物含量随之增加,涂层的硬度值增加,结合强度反而随之降低;由于涂层中三元硼化物的原位生成,MoB/NiCr涂层的硬度值均高于316L不锈钢基体。通过能谱和XRD分析发现,经过360 h熔融锌腐蚀试验后,涂层表层中没有发现锌元素及其金属间化合物,然而随着(Mo+B)/(Ni+Cr)质量比的增加,涂层的孔隙率增加及厚度降低。最后,综合分析可得,相比其他涂层,(Mo+B)/(Ni+Cr)质量比为1:1的MoB/NiCr涂层具有更好的耐熔融锌腐蚀能力。  相似文献   

20.
Understanding the corrosion of molten ZnCl2 on metal surfaces is significant for the corrosion protection of metals, sustainable use of molten salts, preparation of ZnO coatings, and so on. In this paper, surfaces of pure Ni, Cr, and Fe corroded by molten ZnCl2 were investigated. The results show that Ni suffered very slight corrosion, while Cr experienced more serious corrosion than Ni, but lighter corrosion than Fe. The morphology of the corrosion of Cr and Fe, respectively, presented pitting and intergranular corrosion characteristics. Furthermore, nanostructured ZnO coatings were obtained on the surfaces of Ni and Fe, but not on the surface of Cr. The ZnO coating on the Ni surface was doped with a small amount of Zn5(OH)8Cl2, and the ZnO coating on the Fe surface was doped with ZnFe2O4 and Zn2OCl2. The coatings on the Ni and Fe surfaces had an average thickness of 1.5 and 50 μm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号