共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I‐80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir‐fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year‐round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97‐98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor‐generated particles. Systems with MERV13‐16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93‐98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3‐4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25‐75% when operated over the hour following cooking. The energy for year‐round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year. 相似文献
2.
3.
C. He L. D. Knibbs Q. Tran H. Wang R. Laiman B. Wang Y. Gu L. Morawska 《Indoor air》2016,26(4):623-633
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause. 相似文献
4.
J. Taylor C. Shrubsole M. Davies P. Biddulph P. Das I. Hamilton S. Vardoulakis A. Mavrogianni B. Jones E. Oikonomou 《Indoor air》2014,24(6):639-651
A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor‐sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature‐dependent window‐opening scenario. Results demonstrate a range of I/O ratios of PM2.5, with detached and semi‐detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi‐detached properties. 相似文献
5.
N. L. Lam G. Muhwezi F. Isabirye K. Harrison I. Ruiz‐Mercado E. Amukoye T. Mokaya M. Wambua M. N. Bates 《Indoor air》2018,28(2):218-227
Solar lamps are a clean and potentially cost‐effective alternative to polluting kerosene lamps used by millions of families in developing countries. By how much solar lamps actually reduce exposure to pollutants, however, has not been examined. Twenty households using mainly kerosene for lighting were enrolled through a secondary school in Busia County, Kenya. Personal PM2.5 and CO concentrations were measured on a school pupil and an adult in each household, before and after provision of 3 solar lamps. PM2.5 concentrations were measured in main living areas, pupils' bedrooms, and kitchens. Usage sensors measured use of kerosene and solar lighting devices. Ninety percent of baseline kerosene lamp use was displaced at 1‐month follow‐up, corresponding to average PM2.5 reductions of 61% and 79% in main living areas and pupils' bedrooms, respectively. Average 48‐h exposure to PM2.5 fell from 210 to 104 μg/m3 (?50%) among adults, and from 132 to 35 μg/m3 (?73%) among pupils. Solar lamps displaced most kerosene lamp use in at least the short term. If sustained, this could mitigate health impacts of household air pollution in some contexts. Achieving safe levels of exposure for all family members would likely require also addressing use of solid‐fuel stoves. 相似文献
6.
During 13 winter weeks, an experimental archeology project was undertaken in two Danish reconstructed Viking Age houses with indoor open fireplaces. Volunteers inhabited the houses under living conditions similar to those of the Viking Age, including cooking and heating by wood fire. Carbon monoxide (CO) and particulate matter (PM2.5) were measured at varying distances to the fireplace. Near the fireplaces CO (mean) was 16 ppm. PM2.5 (mean) was 3.40 mg/m3, however, measured in one house only. The CO:PM mass ratio was found to increase from 6.4 to 22 when increasing the distance to the fire. Two persons carried CO sensors. Average personal exposure was 6.9 ppm, and from this, a personal PM2.5 exposure of 0.41 mg/m3 was estimated. The levels found here were higher than reported from modern studies conducted in dwellings using biomass for cooking and heating. While this may be due to the Viking house design, the volunteer's lack of training in attending a fire maybe also played a role. Even so, when comparing to today's issues arising from the use of open fires, it must be assumed that also during the Viking Age, the exposure to woodsmoke was a contributing factor to health problems. 相似文献
7.
Field observation of patron smoking behaviors and multiple sampling approaches were conducted in 79 restaurants and bars in Beijing, 2010, 2 years after implementing the governmental smoking regulations. Smoking was observed in 30 visits to 22 of the 37 nominal non‐smoking venues during peak patronage times and six visits to four of the 14 nominal non‐smoking sections. The median area secondhand smoke (SHS) concentrations during peak patronage time were 27, 15, 43, and 40 μg/m3 in nominal non‐smoking venues, non‐smoking sections, smoking sections, and smoking venues, respectively, as indicated by the difference between indoor and outdoor PM2.5 levels; and 1.4, 0.6, 1.7, and 2.7 μg/m3, respectively, as indicated by airborne nicotine. In the 27 venues with sampling of different approaches and over different time periods, the median nicotine concentration was 1.8 μg/m3 by one‐hour peak patronage‐time sampling, 1.1 μg/m3 by 1‐day active area sampling, 2.5 μg/m3 by 1‐day personal sampling, and 2.3 μg/m3 by week‐long passive sampling. No significant differences in nicotine levels were observed among venues/sections with different nominal smoking policies by all sampling approaches except during peak patronage time. This study showed that the 2008 Beijing governmental smoking restriction has been poorly implemented, and SHS exposures in Beijing restaurants and bars remain high. 相似文献
8.
M. Žitnik K. Bučar B. Hiti Ž. Barba Z. Rupnik A. Založnik E. Žitnik L. Rodrìguez I. Mihevc J. Žibert 《Indoor air》2016,26(3):468-477
We report results of analysis of a month‐long measurement of indoor air and environment quality parameters in one gym during sporting activities such as football, basketball, volleyball, badminton, boxing, and fitness. We have determined an average single person's contribution to the increase of temperature, humidity, and dust concentration in the gym air volume of 12500 m3: during 90‐min exercise performed at an average heart rate of 143 ± 10 bpm, a single person evaporated 0.94 kg of water into the air by sweating, contributed 0.03 K to the air temperature rise and added 1.5 μg/m3 and 5 ng/m3 to the indoor concentration of inhalable particles (PM10) and Ca concentration, respectively. As the breathing at the observed exercise intensity was about three times faster with respect to the resting condition and as the exercise‐induced PM10 concentration was about two times larger than outdoors, a sportsman in the gym would receive about a sixfold higher dose of PM10 inside than he/she would have received at rest outside. 相似文献
9.
自然通风在住宅建筑设计中的运用 总被引:1,自引:0,他引:1
在建筑设计中通过引入自然风方式加强人与自然的联系,提高人们的生活质量和环境质量,降低能源消耗,并使人类与自然相近、相亲、相融。 相似文献
10.
We estimated the impact of a smoke‐free workplace bylaw on non‐smoking bar workers' health in Ontario, Canada. We measured bar workers' urine cotinine before (n = 99) and after (n = 91) a 2004 smoke‐free workplace bylaw. Using pharmacokinetic and epidemiological models, we estimated workers' fine‐particle (PM2.5) air pollution exposure and mortality risks from workplace secondhand smoke (SHS). workers' pre‐law geometric mean cotinine was 10.3 ng/ml; post‐law dose declined 70% to 3.10 ng/ml and reported work hours of exposure by 90%. Pre‐law, 97% of workers' doses exceeded the 90th percentile for Canadians of working age. Pre‐law‐estimated 8‐h average workplace PM2.5 exposure from SHS was 419 μg/m3 or ‘Very Poor’ air quality, while outdoor PM2.5 levels averaged 7 μg/m3, ‘Very Good’ air quality by Canadian Air Quality Standards. We estimated that the bar workers' annual mortality rate from workplace SHS exposure was 102 deaths per 100 000 persons. This was 2.4 times the occupational disease fatality rate for all Ontario workers. We estimated that half to two‐thirds of the 10 620 Ontario bar workers were non‐smokers. Accordingly, Ontario's smoke‐free law saved an estimated 5–7 non‐smoking bar workers' lives annually, valued at CA $50 million to $68 million (US $49 million to $66 million). 相似文献
11.
Matias Tagle Ajay Pillarisetti Maria Teresa Hernandez Karin Troncoso Agnes Soares Ricardo Torres Aida Galeano Pedro Oyola John Balmes Kirk R. Smith 《Indoor air》2019,29(2):252-262
In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM2.5) and carbon monoxide (CO) in and around the household environment. In July 2016, cross‐sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time‐integrated samples (24 hours) of PM2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG), or electricity to cook. Qualitative and quantitative household‐level variables were captured using questionnaires. The average PM2.5 concentration (μg/m3) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) was used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM2.5 and CO concentrations (predicted R2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs. 相似文献
12.
Particle mass and number concentrations were measured in a mechanically ventilated classroom as part of a study of ventilation strategies for energy conservation. The ventilation system was operated either continuously, intermittently, or shut down during nights while it was on during workdays. It appears that the nighttime ventilation scheme is not important for indoor particle concentrations the following day if fans are operated to give five air exchanges in advance of the workday. The highest concentrations of PM10 were found during and after workdays and were due to human activity in the classroom. The average workday PM10 concentration was 14 μg/m3, well below the WHO guideline values. The number concentration of particles with diameter <0.750 μm was typically between 0.5 × 103 and 3.5 × 103 particle/cm3. These concentrations were largely independent of the occupants. Transient formation of small particles was observed when ventilation was shut down. Then remaining ozone reacted with terpenes emitted by indoor sources and gave up to 8 × 103 particle/cm3 before formation stopped due to lack of ozone. The intermittent ventilation regime was found least favorable for the indoor air quality in the classroom. 相似文献
13.
采用DeST-h软件模拟了厦门市一栋典型住宅在固定通风与自然通风两种情况下的建筑冷负荷,通过对比分析确定自然通风对建筑冷负荷节能率的贡献。其结果显示,自然通风对厦门地区的居住建筑节能具有重要意义;并据此提出了几点建议。 相似文献
14.
B. Han Z. Bai Y. Liu Y. You J. Xu J. Zhou J. Zhang C. Niu N. Zhang F. He X. Ding 《Indoor air》2015,25(3):320-328
Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic air pollutants in China. However, because there are unsubstantial data on indoor and outdoor particulate PAHs, efforts in assessing inhalation exposure and cancer risk to PAHs are limited in China. This study measured 12 individual PAHs in indoor and outdoor environments at 36 homes during the non‐heating period and heating period in 2009. Indoor PAH concentrations were comparable with outdoor environments in the non‐heating period, but were lower in the heating period. The average indoor/outdoor ratios in both sampling periods were lower than 1, while the ratios in the non‐heating period were higher than those in the heating period. Correlation analysis and coefficient of divergence also verified the difference between indoor and outdoor PAHs, which could be caused by high ventilation in the non‐heating period. To support this conclusion, linear and robust regressions were used to estimate the infiltration factor to compare outdoor PAHs to indoor PAHs. The calculated infiltration factors obtained by the two models were similar in the non‐heating period but varied greatly in the heating period, which may have been caused by the influence of ventilation. Potential sources were distinguished using a diagnostic ratio and a mixture of coal combustion and traffic emission, which are major sources of PAHs. 相似文献
15.
J. Rosbach E. Krop M. Vonk J. van Ginkel C. Meliefste S. de Wind U. Gehring B. Brunekreef 《Indoor air》2016,26(4):538-545
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010–2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)‐glucans, and particles with diameters of <10 μm (PM10) and <2.5 μm (PM2.5) and nitrogen dioxide (NO2) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)‐glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13–38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor‐generated pollutants. 相似文献
16.
Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC). 相似文献
17.
Gypsum wallboard is a popular building material, but is also very frequently overgrown by Stachybotrys chartarum after severe and/or undetected water damage. The purpose of this study was to determine whether Stachybotrys and other fungi frequently isolated from wet gypsum wallboard are already present in the panels directly from the factory. Surface‐disinfected gypsum disks were wetted with sterile water, sealed, and incubated for 70 days. The results showed that Neosartorya hiratsukae (≡ Aspergillus hiratsukae) was the most dominant fungus on the gypsum wallboard followed by Chaetomium globosum and Stachybotrys chartarum. Our results suggest that these three fungal species are already embedded in the materials, presumably in the paper/carton layer surrounding the gypsum core, before the panels reach the retailers/building site. 相似文献
18.
Natural ventilation performance of a residential dwelling is affected by a combination of internal and external factors. External factors are often subject to constraints beyond the control of site planners and architects. Internal factors include the openings configuration, which site planners and architects are free to design the way they deem proper. However, little information is available in this regard. In this study, a case study was conducted by tracer-gas measurements at a carefully selected residential unit for Computational Fluid Dynamics (CFD) model validation. A hypothetical residential unit was formulated to represent the characteristics of typical residential units in Hong Kong. CFD simulations were performed based on the hypothetical unit to evaluate the influence of different openings configurations on natural ventilation performance using the mean age of air. Openings configuration is defined by many parameters. Among the three studied parameters, evaluation results indicate that natural ventilation performance of residential units was most affected by the relative position of the two window openings groups (i.e. bedroom windows and living room windows), followed by building orientation and doors positions. It was found that better natural ventilation performance could be achieved when the two openings groups were positioned in opposite directions or perpendicular to each other. The combined effect of the three parameters was evaluated. It was found that varying two parameters at the same time offered positive improvements in natural ventilation performance, but varying all three parameters did not result in any improvement because of the counter-effects of changes in doors positions. 相似文献
19.
This field study was conducted during summer 2009 in Harbin, northeast of China in order to investigate human responses to the thermal conditions in naturally ventilated residential buildings in cold climate. We visited 257 families in six residential communities and collected 423 sets of physical data and subjective questionnaires. The neutral temperature is 23.7 °C, with the clothing insulation of 0.54 clo. The neutral temperature in Harbin is lower than neutral temperatures in warm climates by others, which is in accordance with the thermal adaptive model. 80% of the occupants can accept the air temperature range of 21.5-31.0 °C, which is wider than the summer comfort temperature limits by the adaptive model. The preferred temperature range fell between 24.0 °C and 28.0 °C. About 57.9% of the subjects voted “no change” with the humid range of 40% and 70%. 61.5% of the occupants voted “no change” with the air velocity within the range of 0.05-0.30 m/s. In summer, occupants preferred air velocity of lower than 0.25 m/s even at higher indoor temperature, which is different from the other field studies. The Harbin occupants in naturally ventilated dwellings can achieve thermal comfort by operable windows instead of running air-conditioners. 相似文献