首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In resin transfer molding, void type defect is one of common process problems, it degenerates the mechanical performances of the final products seriously. Void content prediction has become a research hotspot in RTM, while the void formation when the flow direction and the tow direction are not identical or the fabric is sheared has not been studied to date. In this paper, based on the analysis of the resin flow velocities inside and outside fiber tows, a mathematical model to describe the formation of micro- and meso-scale-voids has been developed. Particular attention has been paid on the influence of flow direction and fabric shear on the impregnation of the unit cell, so their effects on the generation and size of voids have been obtained. Experimental validation has been conducted by measuring the formation and size of voids, a good agreement between the model prediction and experimental results has been found.  相似文献   

2.
Replacing autoclave processes is a well-known industry drive in the composites community. One of the most recognized candidates for this replacement is high injection pressure resin transfer moulding (HIPRTM), because it is both an out of autoclave process and because the high processing pressures can, hypothetically, reduce the size of voids, thereby reducing void content. In order to clarify this issue, this paper presents our results on the size distribution and total void fraction of composites containing high fibre volume fractions (>60%) composites produced by HIPRTM. To substantiate this work we present a comparative study considering both autoclave and RTM at lower pressure/fibre volume fractions. Results show that HIPRTM is able to produce high fibre volume fraction parts at very low void content (<0.05%) and is comparable to autoclave results. Future work should study the mechanical properties of these laminates in order to clarify further the limits of HIPRTM.  相似文献   

3.
Most critical processing step during long fiber reinforced epoxy matrix composite laminate manufacturing is the polymerization stage. If not optimized, it gives birth to defects in the bulk material, such as voids. These defects are considered as possible sources of damage in the composite parts. The aim of this work is to model the evolution of void growth in thermoset composite laminates after ply collation (autoclave processes) or resin impregnation (RTM, LCM process). A coupled mechanical and diffusion model is presented to better predict the final void size at the end of polymerization. Amongst the parameter investigated, onset of pressure application and diffusive species concentration where found to have a major effect on void size evolution during curing process.  相似文献   

4.
在0.1~0.35 MPa的树脂注射压力条件下,制备了孔隙含量不同的玻璃纤维连续毡/E51环氧树脂的树脂传递模塑(RTM)工艺试件,采用超声法、金相法和密度烧失法测量试件的孔隙含量。讨论了孔隙含量随树脂注射压力变化以及孔隙含量对RTM玻璃纤维/环氧树脂复合材料超声参数和力学性能的影响规律。结果表明,树脂注射压力的变化对孔隙含量产生明显影响,注射压力由0.1 MPa增加到0.35 MPa过程中,玻璃纤维连续毡/E51环氧树脂复合材料的孔隙含量从9.95%减小至3.73%。超声特征参数随孔隙含量的增加呈近于线性递增,尤其是超声非线性特征参数的变化更加明显,超声特征参数的变化可评价复合材料孔隙含量。  相似文献   

5.
The fabrication process for a novel carbon fiber-reinforced polymer (polyamide 12) composite femoral stem using inflatable bladder molding was studied. Effect of processing temperature, holding time and applied internal pressure on the consolidation quality of the composite was investigated. Consolidation quality was evaluated by density and void content measurements and scanning electron microscope analysis. As expected, void content (porosities) and presence of large resin pockets were found to increase for lower processing temperature, holding time and applied pressure. Crystallinity as well as melting temperatures measured using differential scanning calorimetry could be related to molding conditions. A progressive reduction of the previous thermal history (crystalline peak of neat composite) and an increase in crystallinity were obtained for higher molding temperature. Static compression testing with void content analysis of molded specimens was used to determine optimal molding conditions. The composite structure molded showed compressive modulus close to cortical bone’s. Compression load at failure of composites molded in optimal conditions were found to be three times higher than those of femoral bone for jumping on one leg or 10 times those for normal gait. The molded composite structure appears to be an excellent candidate for femoral stems used in total hip arthroplasty.  相似文献   

6.
The influence of prepreg solvent content on void occurrence in woven glass fiber-reinforced polyimide composites and their tensile properties was studied. A precursor solution of SKYBOND 703 was diluted in an additional solvent (n-methyl pyrrolidone) and the glass woven fabric was immersed in about 40 wt.% polyamic acid, in solvent. Prepregs were dried at 373 K for different time intervals, ranging from 2 to 24 h. Prepregs with varying residual solvent content under each condition were laid up, and their [(0/90)]4 composite laminates were formed by autoclaving at a hydrostatic pressure of 0.7 MPa. The relationship of drying time with the amount of residual prepreg solvent, as well as with the volume fractions of fiber and voids was investigated. The void geography and content for each composite laminate, and the tensile strength and modulus at room temperature were also evaluated. The results clearly indicated that, depending on the altering residual solvent content in the prepreg, the void geometry and location influenced reduction of the tensile properties of woven fabric composite laminate. An appropriate prepreg resin viscosity during curing, which avoids reduction of the tensile properties, was revealed.  相似文献   

7.
Optimization of RTM processing parameters for Class A surface finish   总被引:1,自引:0,他引:1  
Resin transfer moulding (RTM) has the potential to become an efficient and economical process for manufacturing large automotive composite parts. For body panels, the material and processing parameters must be optimized in order to achieve a Class A surface finish. In this work, the Taguchi method was used to investigate the effect of low profile additives, injection pressure, temperature gradient, filler content, styrene content and gel time on the surface finish of glass fibre polyester composite panels. The low profile additives (LPA) concentration, mixed in with the resin to compensate for its chemical shrinkage, was found to be the most influential parameter affecting surface roughness and waviness. More samples were subsequently moulded under the corresponding optimum processing conditions for validation and variability assessment.  相似文献   

8.
A model is developed to describe the void dynamics within thermoplastic composite tape during the tape placement process. The model relates the volatile pressure in voids, the applied compaction load, fiber bed response and the resin pressure due to squeeze-flow of resin from resin-rich regions to fill void regions. This model relies on some geometric simplifications, but incorporates the relevant physical phenomena.This void consolidation model was implemented in a numerical code which predicts the void development during the process. The initial void geometry can be introduced either manually, using a random generation algorithm or from actual processed tape micrographs.The model predicts that the final void content depends on the original void content but also on the initial void distribution. Presented results analyze the influence of void distribution on tape consolidation. Limitations of the consolidation process rate by the resin squeeze flow pressures are clearly demonstrated.  相似文献   

9.
本文具体分析了用组分密度和含量来计算复合材料孔隙率时所具有的误差。对纤维增强塑料来说,最大的误差来自用整块树脂的密度代替了复合材料中树脂基体的密度。   相似文献   

10.
We studied the mechanism of volatile-induced surface porosity formation during the resin transfer molding (RTM) of aerospace composites using a blended benzoxazine/epoxy resin, and identified reduction strategies based on material and processing parameters. First, the influence of viscosity and pressure on resin volatilization were determined. Then, in situ data was collected during molding using a lab-scale RTM system for different cure cycles and catalyst concentrations. Finally, the surface quality of molded samples was evaluated. The results show that surface porosity occurs when cure shrinkage causes a sufficient decrease in cavity pressure prior to resin vitrification. The combination of thermal gradients and rapid gelation can generate large spatial variations in viscosity, rendering the coldest regions of a mold susceptible to porosity formation. However, material and cure cycle modifications can alter the resin cure kinetics, making it possible to delay the pressure drop until higher viscosities are attained to minimize porosity formation.  相似文献   

11.
In the autoclave process, resin flow is a primary mechanics for the removing of excess resin and voids entrapped in the laminate and obtaining a uniform and void free composite part. A numerical method was developed to simulate the resin flow in the laminate and the bleeder, and the effects of ‘bleeder flow’ on the resin flow and fiber compaction were conducted. At the same time, fiber distribution in the cured laminates was investigated by both experiments and simulations for the CF/Epoxy and CF/BMI composites. The data of the experiments and simulations demonstrated that fibers consolidated and reconsolidated in the laminate and it was impacted by the viscosity and gel time of the resin system. Compared to the post study in which only resin flow in the laminate are considered, these results will deepen the understanding of the consolidation process, resin pressure variation and void control during the autoclave process, which is valuable for the study of the performance of composite parts, provided that fiber distribution does affect some properties of composite material.  相似文献   

12.
Recently, there has been a growing research interest on renewable composite due to sustainability concerns. This work demonstrates the possibilities of bio-based reactive diluents and thermoset resin systems in composite applications from an engineering point of view. Formulating bio-based resins and monomers with different reactive diluents can tailor the physical and mechanical properties of the polymer system, allowing them to be suitable for different applications. In addition to the traditional reactive diluents, bio-based methacrylated fatty acid (MFA) was used in the formulations. Increasing the MFA content increases the toughness and the bio-based content of thermosetting polymers while reducing the hazardous air pollutant emissions. Composites panels with fiber glass and natural fiber reinforcement using selected bio-based resin formulations showed good mechanical properties and exhibited similar physical performance to parts made with commercial petroleum derived resins.  相似文献   

13.
The thermoset tape pultrusion is a widely adopted manufacturing process to produce long, constant cross-section composite structural parts. For high volume production, low cost can be achieved by maximizing the production rate which is a function of the material and process parameters, more specifically the rate of resin infiltration and resin cure. During resin infiltration, the resin saturates the dry reinforcement either under positive pressure in the pressure chamber, or, by the action of capillary and surface forces, within the resin bath. In either case, the saturation must be completed as the tape is squeezed into the final cross-sectional form at the entrance of the heated mold where the resin will be cured to form the composite part.This paper models the resin infiltration process during pultrusion, by modifying the pre-existing simulation tool for liquid molding processes. The formulated capability can be used not only to optimize the impregnation dynamics within the pressure chamber, but can also be used to predict the required forces for the selected pulling rate. The proposed model does allow one to handle a variety of tape cross-sections, not just rectangular prisms.  相似文献   

14.
《Composites Part A》2005,36(9):1291-1299
The aim of this work is to quantify the effect of process-related parameters on the level of specific energy absorption (SEA). This study comprises two sections: the first studies the effect of variable binder levels in the part (0–10% based on equivalent fibre mass). Highly soluble polyester powder binder is added to the resin to simulate the resin state near the end of injection and no binder is incorporated in the preform. The aim for the second part is to study the effect of processing variables on the level of voids in the composite and subsequently characterise the effect of void level on the energy absorption of the parts. Two thermosetting composite materials are examined; a continuous filament random mat (CoFRM) and a non-crimp fabric (NCF) at volume fractions of 22 and 38%, respectively. The parts moulded are generic tubular energy absorbing structures with double cantilever beam (DCB) and in-plane tensile and compressive specimens as secondary tests. An unsaturated polyester resin developed for automotive RTM applications is used for all parts. Mode-I fracture toughness shows significant changes with binder content, however, the SEA of the composite tube is observed to be very tolerant of binder level. Three processing regimes were used yielding void levels between ∼0 and over 10%. The SEA levels for both materials are seen to be tolerant of high void levels allowing potential cost reduction through rapid processing.  相似文献   

15.
Volatile release during cure is a potential cause of void formation during the resin transfer molding of complex thermosetting resins. In this study, a blended benzoxazine–epoxy resin system is analyzed to determine the rate at which volatiles are evolved, as well as the dependence of that rate on process parameters. The evolution of thermophysical and thermochemical resin properties is characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The identity and rate of evolution of the gaseous byproducts released during cure are determined at ambient pressure using a Fourier transform infrared spectrometer (FTIR) linked to a reaction cell. The results show that gas release during cure can be reduced but not eliminated by degassing at elevated temperature. Furthermore, the results indicate that the nature and rate of volatile release can be modified by judicious selection of cure cycle, as shown by a preliminary analysis of manufactured neat resin panels.  相似文献   

16.
Void formation as a function of resin moisture content was investigated to better understand and control process defects in composite parts made from prepreg. In this study, uncured prepreg was conditioned at 70%, 80% and 90% relative humidity and at 35 °C. Conditioned prepreg was laid up into quasi-isotropic laminates and cured using vacuum bag only (VBO) processing (low-pressure), and autoclave processing. Moisture uptake in the resin was measured using coulometric Fischer titration. Void content was measured by image analysis of polished sections of cured laminates. Void fractions increased substantially with increasing moisture content in VBO processed laminates, while autoclave-processed parts remained void-free. Experimental results were consistent with trends predicted using a diffusion-based analytical model. The findings are discussed in the context of causes of voids in prepreg composites.  相似文献   

17.
Liquid composite molding (LCM) is a method to manufacture fiber-reinforced composites, where dry fabric reinforcement is impregnated with a resin in a molding apparatus. However, the inherent process variability changes resin flow patterns during mold filling, which in turn may cause void formation. We propose a method to reconstruct three-dimensional resin flow in LCM, without embedding sensors into the composite structure. Capacitance measured from pairs of electrodes on molding tools and the stochastic simulation of resin flow during an LCM process are integrated by a sequential data assimilation method based on the ensemble Kalman filter; then, three-dimensional resin flow and permeability distribution are estimated simultaneously. The applicability of this method is investigated by numerical experiments, characterized by different spatial distributions of permeability. We confirmed that changes in resin flow caused by spatial permeability variations could be captured and the spatial distribution of permeability could be estimated by the proposed method.  相似文献   

18.
The effect of temperature cycle on the void volume fraction, shape and spatial distribution was determined by means of X-ray microtomography in [0]10 AS4/8552 composite laminates manufactured by compression molding. Cure temperatures were designed to obtain different processing windows while the overall degree of cure was equivalent, leading to laminates with average porosities in the range 0.4% and 2.9%. Regardless of the final porosity, voids were elongated, oriented parallel to the fibers and concentrated in channels along the width of the laminate as a result of the inhomogeneous process of consolidation and resin flow along the fibers. The interlaminar shear strength was found to be controlled by the void volume fraction in panels with porosity above 1%.  相似文献   

19.
Decreasing the amount of residual voids during the resin infiltration into fibrous porous media is an important aspect in manufacturing high performance composite materials.In order to better understand void transports and flow behaviors in filling process,which affects immediately the final void content,a finite-element scheme for transient simulations of the void migration in a transverse flow through the uniaxial micro-structured fibrous media is developed in this work.A volume-of-fluid (VOF) method has been incorporated in the Eulerian frame to capture the free surface of the resin flow.The implementation of periodic boundary condition to the vertical direction avoids unwanted wall effect.The void migration in a dual-scale fiber tow model was investigated.The voids are observed to be transported through the inter-tow region as well as entrapped into fiber tow.It is that the motion of void lagged behind macro flow front which implies that the adequate resin bleeding after mold filling is crucial to remove the entrapped air.  相似文献   

20.
Decreasing the amount of residual voids during the resin infiltration into fibrous porous media is an important aspect in manufacturing high performance composite materials.In order to better understand void transports and flow behaviors in filling process,which affects immediately the final void content,a finite-element scheme for transient simulations of the void migration in a transverse flow through the uniaxial micro-structured fibrous media is developed in this work.A volume-of-fluid (VOF) method has been incorporated in the Eulerian frame to capture the free surface of the resin flow.The implementation of periodic boundary condition to the vertical direction avoids unwanted wall effect.The void migration in a dual-scale fiber tow model was investigated.The voids are observed to be transported through the inter-tow region as well as entrapped into fiber tow.It is that the motion of void lagged behind macro flow front which implies that the adequate resin bleeding after mold filling is crucial to remove the entrapped air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号