首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 671 毫秒
1.
采用等温轴对称热压缩实验对Al-Zn-Mg-0.25Sc-Zr合金的热变形行为和微观组织演化进行研究。变形温度为340~500°C,应变速率为0.001~10 s-1。结果表明:稳态流变应力随着应变速率的增加和变形温度的降低而增大,该合金的流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为150.25 kJ/mol。在变形温度较高和应变速率较低(即Z参数较低)的条件下,动态再结晶更容易发生。随着Z参数的变小,合金的主要软化机制由动态回复转变为动态再结晶,合金中的位错密度降低,亚晶尺寸增大。  相似文献   

2.
系统研究了铸态UNS N10276合金在950~1 250℃、应变速率0. 01~10 s-1变形条件下的热压缩流变行为和微观组织演变。结果表明,UNS N10276合金流变应力值随着变形温度的升高以及应变速率的降低而减小,较高的变形温度以及较小的应变速率有利于动态再结晶的发生。根据UNS N10276合金在热变形过程中的流变行为和组织演变特征,得出该合金适宜在温度为1 050~1 250℃以及应变速率为0. 1~1 s-1的变形条件下进行热加工。此外,根据Arrhenius本构模型中的指数函数方程及流变应力数据,建立了UNS N10276合金的热变形本构模型为Z=εexp(497×10~3/RT)=2. 4×10~(14)exp(0.033σ_(0.5)),其表观激活能Q为497 kJ/mol。  相似文献   

3.
对Al-Cu-Li合金进行温度300~500℃、应变速率0.001~10s~(-1)的等温热压缩,分析合金的流变行为:结合TEM和EBSD研究合金热变形过程中的组织演变。结果表明:合金流变曲线分为3个阶段:加工硬化阶段、过渡阶段和稳态变形阶段;变形温度越高,流变应力达到动态平衡所需应变量越小。基于应变硬化率(θ)与流变应力(σ)之间的关系,确定动态再结晶的临界应变(ε_c);不同热变形条件下的临界应变(ε_c)与峰值应变(ε_p)之比为0.30342~0.92828;临界应力(σ_c)与峰值应变(σ_p)之比为0.88492~0.99782。引入最大软化率应变(ε~*)和中间变量Z/A,建立ε_c和ε~*与Z/A的关系表达式。构建Al-Cu-Li合金动态再结晶动力学模型,模型表明,温度越高或应变速率越低,越有利于促进动态再结晶分数的增加;显微组织分析结果与模型预测规律一致。Al-Cu-Li合金动态再结晶形核机制主要为晶界突出形核机制、亚晶合并长大机制以及粒子促进形核机制,随温度升高和应变速率的降低,晶内亚晶合并长大机制得到加强。  相似文献   

4.
7039铝合金高温的热变形行为   总被引:5,自引:3,他引:2  
采用圆柱试样在Gleeble-1500材料热模拟实验机上对7039铝合金进行高温等温压缩实验,研究了该合金在变形温度为300-500℃,应变速率为0.01-10/s条件下的流变变形行为.结果表明:变形温度和应变速率对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随心变速率的增加而升高;在应变速率(ω)<10/s条件下合金表现出动态回复特征,而应变速率(ω)=10/s时,合金发生了局部动态再结晶.7039铝合金的高温流变行为可用Zener-Hollomon参数描述.从流变应力、应变速率和变彤温度的相关性,得出了该合金高温变形时的四个材料常数.  相似文献   

5.
在Gleeble-1500热模拟机上通过等温热压缩试验研究高铜6A82铝合金(Al-Mg-Si-Cu)在变形温度为320~530℃、应变速率为0.001~10 s~(-1)条件下的流变应力和显微组织演变。结果表明,合金的流变应力在变形温度为320~390℃的范围内呈连续软化行为,在温度高于460℃的条件下达到稳定状态。合金的流变行为受双曲正弦形式的本构方程(Zener-Hollomon参数Z)影响,其热变形激活能为325.12 k J/mol。显微组织表征表明,明显的动态再结晶和动态析出的粗化导致流变应力的连续软化。在相近的ln Z值条件下,变形热使合金在530℃、10 s~(-1)条件下的动态再结晶比460℃、0.1 s~(-1)条件下的更加明显。  相似文献   

6.
热压缩Ti-4.5Al-3Mo-1V合金的流变应力行为   总被引:1,自引:0,他引:1  
宗影影  单德彬  吕炎 《锻压技术》2005,30(3):50-52,55
采用Gleeble-1500热模拟机对Ti-4.5Al-3Mo-1V合金在α β相区进行了等温热压缩实验,根据摩擦修正后的流变应力曲线,研究了此合金在α β相区恒温压缩时的动态软化规律,分析了热变形参数对该合金流变应力的影响,并采用BP人工神经网络的方法建立了该合金高温变形抗力与应变、应变速率和温度对应关系的预测模型。结果表明:合金的流变应力曲线在低应变速率下达到极值后逐渐软化,在高应变速率下,出现极值后连续振动,然后再逐渐软化的现象;软化的主要机制为动态再结晶;流变应力随温度的升高和应变速率的减小而急剧降低;神经网络方法能够较精确地预测材料的流变应力。  相似文献   

7.
采用热力模拟试验机对Al-0.83Mg-0.59Si铝合金进行热压缩实验,研究了变形温度300~500 ℃、变形速率0.001~10 s-1下材料的动态再结晶行为。实验得到Al 0.83Mg 0.59Si合金在300~500 ℃变形时,软化机制以动态再结晶为主;流变应力会随着变形温度的降低和变形速率的升高而升高,较低变形速率下,动态再结晶行为更充分,应力软化现象更明显。统计实验所得流变应力曲线数据,建立了热变形本构方程,确定了合金热变形激活能Q为480.243 kJ/mol 。基于加工硬化率曲线,建立了其动态再结晶临界应变模型。结果表明,Al-0.83Mg-0.59Si铝合金的流变应力随温度的升高和变形速率的降低而降低,动态再结晶是其主要的软化机制。临界应力与峰值应力存在线性关系:σc=0.85σp-5.061 58。引入Zener Hollomon参数来描述变形条件对临界条件的影响,得到临界应变与Z参数的关系为:εc=0.000 134Z0.051 64。  相似文献   

8.
在Gleeble-1500热模拟机上对Ti-5Al-5Mo-5V-1Cr-1Fe合金进行高温热压缩实验,研究该合金在变形温度为750~900℃、应变速率为0.001~1 s 1条件下的流变应力行为。利用光学显微镜分析合金在不同变形条件下的组织演化规律。结果表明:合金的流变应力随着应变速率的增大和变形温度的降低而增大;流变应力随着应变的增加而增大,出现峰值后逐渐趋于平稳;变形过程中的流变应力可用Arrhenius双曲正弦本构关系来描述,平均变形激活能为454.2 kJ/mol;各种变形条件均可细化原始晶粒尺寸。随着温度的升高和应变速率的降低,合金的主要软化机制由动态回复逐渐变为动态再结晶;在(α+β)相区变形(750~850℃)时,α相对β晶粒的动态再结晶的发生起到阻碍作用。  相似文献   

9.
6082铝合金热变形的本构模型   总被引:5,自引:1,他引:4  
利用Gleeble-1500热模拟机,研究6082锅合金在变形温度为300~500℃以及应变速率为0.01-10/s下高温单道次压缩过程的热变形流变应力行为.结果表明:6082铝合金高温单道次压缩下的热变形经历了从应变硬化阶段过渡到稳态变形阶段的过程,其软化机制主要为动态回复.该合金流变应力的大小受变形温度、应变速率的强烈影响,它随变形温度升高而降低,随应变速率提高而增大,说明该合金足一个正应变速率敏感的材料.该合金高温流变应力σ可采用Zener-Hollomon参数的函数来描述,函数表达式中参数A,a和n的值分别为3.97×1011s-1、0.011MPa-1、9.16;其热变形激活能Q为143.89kJ/mol.  相似文献   

10.
汽车用5182铝合金板材的温拉伸流变行为   总被引:5,自引:0,他引:5  
在变形温度为323~573 K、应变速率为0.001~0.1/s条件下,采用Instron-8032电子拉伸实验机对汽车用5182铝合金板的流变行为进行研究,采用修正后的Fields-Backofen方程描述5182铝合金温拉伸时的流变行为,建立5182铝合金在温拉伸时的应力-应变本构模型.结果表明:在同一应变速率下,合金的流变应力随温度升高而降低;对于较高温度(448、523和573 K)、较低应变速率(ε=0.001/s),合金的流变应力出现明显的峰值应力,表现出动态再结晶特征;随着应变速率增加,合金的流变应力呈现稳态,表现出动态回复特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号