首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

2.
In recent theoretical work we have shown that the sintering of a composite is strongly affected by the shear deformation of the continuous phase. This phenomenon was studied experimentally in a model system consisting of a TiO2 matrix dispersed with nondensifying agglomerates of Al2O3. The results of this study are reported here. Several interesting results were obtained: (a) The experimentally obtained sintering rate of the composite could be successfully predicted by measuring the concomitant shear and densification rate of the matrix phase in a sinter-forging experiment and using the developed analysis; (b) the densification rate of the composite changed with the volume fraction of the dispersed phase, but was unaffected by the size of the dispersed phase; and (c) processing flaws appeared to form only when the size of the dispersed phase was greater than about 10 μm. A technique for measuring the parameter β, which was used to correlate theory and experiments, is described. The procedures used for preparation of powders (from alkoxides) and the green compacts are also described in detail.  相似文献   

3.
The FTIR, Raman, UV-Vis, 31P MAS-NMR, DTA, and refractive index measurements have been combined to investigate a series of glasses with the general formula 20Na2O–5Al2O3− x TiO2–(45− x )Nb2O5–30P2O5, 15≤ x ≤45. The glass structure, as well as thermal, optical, and chemical durability properties, were then described as functions of the f Nb/ f Ti ratio. An increase of the f Nb/ f Ti ratio correlates with a decrease in length of the average phosphate chains linked through Nb–O–P and Ti–O–P bonds, with an increase in the glass stability and with increase in the linear refractive indices at 632.8 nm from 1.79 to 1.89. Furthermore, niobium is more effective than titanium in improving chemical durability.  相似文献   

4.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

5.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

6.
7.
Subsolidus phase equilibria in the system Fe2O3–Al2O3–TiO2 were investigated between 1000° and 1300°C. Quenched samples were examined using powder X-ray diffraction and electron probe microanalytical methods. The main features of the phase relations were: (a) the presence of an M3O5 solid solution series between end members Fe2TiO5 and Al2TiO5, (b) a miscibility gap along the Fe2O3–Al2O3 binary, (c) an α-M2O3( ss ) ternary solid-solution region based on mutual solubility between Fe2O3, Al2O3, and TiO2, and (d) an extensive three-phase region characterized by the assemblage M3O5+α-M2O3( ss ) + Cor( ss ). A comparison of results with previously established phase relations for the Fe2O3–Al2O3–TiO2 system shows considerable discrepancy.  相似文献   

8.
This paper reports processing of lithium ion-conducting, composite membranes comprised of 14Li2O·9Al2O3·38 TiO2·39P2O5 glass–ceramic and polyethylene. The processing involved tape casting of 14Li2O·9Al2O3·38TiO2·39P2O5 glass powder with organic additives into tapes, subjecting the green tape to binder burnout and thermal soaking in the temperature range of 950°–1100°C, and finally infiltrating the porous tape with polyethylene solution. The ionic conductivity and microstructure of 150–350 μm thick membranes were characterized and are discussed in this paper. The crystallites of the glass–ceramic show liquid-like conductivity at ambient temperature, whereas the grain boundary conductivity is lower by a factor of five. The lower grain boundary conductivity is explained on the basis of crystallographic mismatch and the existence of AlPO4 at the grain boundary. The polyethylene infiltration in the porous membrane improved mechanical resilience with a minor adverse effect on conductivity.  相似文献   

9.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

10.
11.
The effect of Al2O3 and (Ti or Si)C additions on various properties of a (Y)TZP (yttria-stabilized tetragonal zirconia polycrystal)–Al2O3–(Ti or Si)C ternary composite ceramic were investigated for developing a zirconia-based ceramic stronger than SiC at high temperatures. Adding Al2O3 to (Y)TZP improved transverse rupture strength and hardness but decreased fracture toughness. This binary composite ceramic revealed a rapid loss of strength with increasing temperature. Adding TiC to the binary ceramic suppressed the decrease in strength at temperatures above 1573 K. The residual tensile stress induced by the differential thermal expansion between ZrO2 and TiC therefore must have inhibited the t - → m -ZrO2 martensitic transformation. It was concluded that a continuous skeleton of TiC prevented grain-boundary sliding between ZrO2 and Al2O3. In contrast, for the ternary material containing β-SiC in place of TiC, the strength decreased substantially with increasing temperature because of incomplete formation of the SiC skeleton.  相似文献   

12.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

13.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

14.
Alumina–aluminum titanate–titania (Al2O3–Al2TiO5–TiO2) nanocomposites were synthesized using alkoxide precursor solutions. Thermal analysis provided information on phase evolution from the as-synthesized gel with an increase in temperature. Calcination at 700°C led to the formation of an Al2O3–TiO2 nanocomposite, while at a higher temperature (1300°C) an Al2O3–Al2TiO5–TiO2 nanocomposite was formed. The nanocomposites were uniaxially compacted and sintered in a pressureless environment in air to study the densification behavior, grain growth, and phase evolution. The effects of nanosize particles on the crystal structure and densification of the nanocomposite have been discussed. The sintered nanocomposite structures were also characterized for dielectric properties.  相似文献   

15.
16.
17.
In this work, the liquidus of synthetic CaO–SiO2–MgO–Al2O3–CrO x slags is evaluated in the industrially relevant compositional domain. Equilibrium experiments are carried out at 1500°C and partial oxygen pressure ( p O2) 10−11.04 atm, and at 1600°C and p O2=10−10.16 and 10−9.36 atm. The studied basicities (CaO/SiO2) are 1.2 and 0.5. Al2O3 levels range from 0 to 30 wt%. Oversaturated liquid is sampled and phase relations are measured with quantitative electron probe microanalysis–wavelength dispersive spectroscopy (EPMA–WDS). The results are compared with the commercially available FactSage thermodynamic databases. Qualitative agreement is always obtained. Also a good quantitative agreement is found at the higher basicity, especially for the spinel liquidus. A minor but systematic deviation can be observed for the eskolaite liquidus. At the lower basicity, the calculated phase diagram deviates strongly from the experimental results, probably due to missing ternary interactions in the database.  相似文献   

18.
Alpha alumina with additions of TiO2 sintered more rapidly than "pure" alumina. The rate of initial sintering increased approximately exponentially with titania concentration up to a percentage beyond which the rate of sintering remained approximately constant or decreased slightly with additional titania. The concentration which produces the maximum rate of sintering is thought to be the solubility limit of TiO2 in Al2O3. For alumina particles larger than about 2 μm, the kinetic process was mainly grain-boundary diffusion. With smaller particles, volume diffusion increased. The "solubility limit" increased with decreasing particle size, indicating an excess surface concentration of TiO2. The data may be interpreted in terms of a region of enhanced diffusion at the grain boundary that increases with TiO2 concentration. With small alumina particles, this region is large enough to become a significant portion of the volume of the particle, and the small particles appear to sinter by volume diffusion kinetics, but the diffusion coefficient corresponds to an enhanced diffusion coefficient.  相似文献   

19.
A morphous solids belonging to the systems Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3 were prepared by nitrate decomposition, introducing boron in the form of boric acid. Crystalline metastable solids with pseudotetragonal symmetry were obtained from thermal treatment at 850° to 900°C for the compositions Al6MexO(9+0.5 x ) ( x ≅ 1; Me = Na, K) and Al6- x B x O9 (1 x 3). The resultant solids were stable only within a difinite temperature range and transformed, with further treatment increases, into stable equilibrium phases. The structures of the metastable phases were examined by X-ray diffraction and Fourier transform infrared spectroscopy, and both analyses showed a mullite type of framework, inside of which the atomic coordinates were refined in the Pbam (no. 55) space group. The present results indicate that these silica-free mullite structures are stabilized by two different mechanisms: (1) interstitial occupation of bulky cations (Na+, K+) or (2) substitution of B for Al in some of the tetrahedral positions.  相似文献   

20.
A eutectic solid of Al2O3–GdAlO3 was prepared by arc discharge and crushed to a eutectic powder of 3–125 μm. The powder was consolidated by the spark plasma system (SPS). The consolidated powder duplicated the eutectic structure: Al2O3 and GdAlO3 were joined to each crystal. There were no flaws such as cracks or pores in the eutectic composite. The bending strength was half that of the eutectic composite prepared by unidirectional solidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号