首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the recently proposed (SISO) multi-scale control scheme, a new approach is introduced to design multi-loop controllers for multivariable processes. The basic feature of the multi-scale control scheme is to decompose a given plant into a sum of basic modes. To achieve good nominal control performance and performance robustness, a set of sub-controllers are designed based on the plant modes in such a way that they are mutually enhanced with each other so as to optimize the overall control objective. It is shown that the designed multi-scale controller is equivalent to a conventional PID controller augmented with a filter. The multi-scale control scheme offers a systematic approach to designing multi-loop PID controllers augmented with filters. Numerical studies show that the proposed multi-loop multi-scale controllers provide improved nominal performance and performance robustness over some well-established multi-loop PID controller schemes.  相似文献   

2.
This paper reports on the synthesis of different flight controllers for an X-Cell mini-helicopter. They are developed on the basis of the most realistic mathematical model currently available. Two hybrid intelligent control systems, combining computational intelligence methodologies with other control techniques, are investigated. For both systems, Mamdani-type fuzzy controllers determine the set points for altitude/attitude control. These fuzzy controllers are designed using a simple rule base. The first scheme consists of conventional SISO PID controllers for z-position and roll, pitch and yaw angles. In the second scheme, two of the previous PID controllers are used for roll and pitch, and a linear regulator is added to control altitude and yaw angle. These control schemes mimic the action of an expert pilot. The designed controllers are tested via simulations. It is shown that the designed controllers exhibit good performance for hover flight and control positioning at slow speed.  相似文献   

3.
In process industries, PID control schemes have been widely used due to their simple structures and easiness of comprehending the physical meanings of control parameters. However, the good control performance cannot be obtained by simply using PID controlschemes, since most processes are considered as nonlinear multivariable systems with mutual interactions. In this paper, a design method of multiloop PID controllers neural‐net based decoupler is proposed for nonlinear multivariable systems with mutual interactions. The proposed method consists of a decoupler given by the sum of a static decoupler and a neural‐net based decoupler, and multi‐loop PID controllers. Finally, the effectiveness of the proposed control scheme is evaluated on the simulation examples.  相似文献   

4.
This paper presents a new methodology to design multivariable proportional-integral-derivative (PID) controllers based on decoupling control. The method is presented for general n × n processes. In the design procedure, an ideal decoupling control with integral action is designed to minimise interactions. It depends on the desired open-loop processes that are specified according to realisability conditions and desired closed-loop performance specifications. These realisability conditions are stated and three common cases to define the open-loop processes are studied and proposed. Then, controller elements are approximated to PID structure. From a practical point of view, the wind-up problem is also considered and a new anti-wind-up scheme for multivariable PID controller is proposed. Comparisons with other works demonstrate the effectiveness of the methodology through the use of several simulation examples and an experimental lab process.  相似文献   

5.
This study presents a novel closed-loop tuning method for cascade control systems, in which both primary and secondary controllers are tuned simultaneously by directly using set-point step-response data without resorting to process models. The tuning method can be applied on-line to improve the performance of existing underperforming cascade controllers by retuning controller parameters, using routine operating data. The goal of the proposed design is to obtain the parameters of two proportional-integral-derivative (PID)-type controllers, so that the resulting inner and outer loops behave as similarly as possible to the appropriately specified reference models. The tuning rule and optimization problem related to the proposed design are derived. Based on the rationale behind cascade control, the secondary controller is designed based on disturbance rejection to quickly attenuate disturbances. The primary controller is designed to accurately account for the inner-loop dynamics, without requiring an additional test. In addition, robustness considerations are included in the proposed tuning method, which enable the designer to explicitly address the trade-off between performance and robustness for inner and outer loops independently. Simulation examples show that the proposed method exhibits superior control performance compared with the previous (model-based) tuning methods, confirming the effectiveness of this novel tuning method for cascade control systems.  相似文献   

6.
连铸过程结晶器液面控制的模糊控制方法   总被引:5,自引:0,他引:5  
对连铸过程结晶器液面控制提出一种新的模糊控制方法。该方法采用一种简化的模糊 PID结构 ,结合了传统模糊 PI与模糊 PD控制方法的优点。仿真结果表明 ,该方法对周期性扰动具有良好的抑制效果 ,对过程参数的变化具有很强的鲁棒性  相似文献   

7.
In this paper, optimal H2 internal model controller (IMC) is designed for control of unstable cascade processes with time delays. The proposed control structure consists of two controllers in which inner loop controller (secondary controller) is designed using IMC principles. The primary controller (master controller) is designed as a proportional-integral-derivative (PID) in series with a lead-lag filter based on IMC scheme using optimal H2 minimisation. Selection of tuning parameter is important in any IMC based design and in the present work, maximum sensitivity is used for systematic selection of the primary loop tuning parameter. Simulation studies have been carried out on various unstable cascade processes. The present method provides significant improvement when compared to the recently reported methods in the literature particularly for disturbance rejection. The present method also provides robust closed loop performances for large uncertainties in the process parameters. Quantitative comparison has been carried out by considering integral of absolute error (IAE) and total variation (TV) as performance indices.  相似文献   

8.
This paper is concerned with the design of Multi‐Inputs and Multi‐Outputs (MIMO) predictive PID controllers, which have similar performance to that obtainable from model‐based predictive controllers. A new PID control structure is defined which incorporates the prediction of future outputs and uses future set point. A method is proposed to calculate the optimal values of the PID gains from generalised predictive control results. A decentralized version of the predictive PID controllers is presented and the stability of the closed loop system is studied. Simulation studies demonstrate the superior performance of the proposed controller compared with a conventional PID controller. The results are also compared with generalised predictive control solutions.  相似文献   

9.
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.  相似文献   

10.
This paper presents the use of inverse neural networks (INN) for temperature control of a biochemical reactor and its effect on ethanol production. The process model is derived indicating the relationship between temperature, pH and dissolved oxygen. Using fundamental model obtained data sets; an inverse neural network has been trained using the back-propagation learning algorithm. Two types of temperature profile are used to compare the performance of the INN and conventional PID controllers. These controllers have been simulated in MATLAB for a quantitative comparison. The results obtained by the neural network based INN controller and by the PID controller are presented and compared. There is an improvement in the performance of INN controller in settling time and dead time and steady state error over the PID controller.  相似文献   

11.
积分时滞过程的数字P I D 控制   总被引:5,自引:0,他引:5       下载免费PDF全文
对积分时滞过程提出一种数字PID控制结构,通过一个内部反馈回路对积分时滞过程进行预稳定控制,并给出数字PI控制器的设计算法,仿真结果显示该控制结构具有良好的设定值跟踪特性,并且对时滞偏差具有很强的鲁棒性能,最后简要讨论了抗负载干扰的控制结构。  相似文献   

12.
文中详细分析Smith预估模型参数对控制系统性能的影响,提出一种Smith预估模型参数多目标优化整定的控制方案,利用模型失配有效改善控制系统的性能.针对火电厂过热汽温系统高阶、大惯性及非线性特点,设计一种基于串级PID的Smith预估器参数多目标自调整优化控制系统.对某600MW超临界火电机组过热汽温系统进行仿真控制,结果表明,该方案具有良好的鲁棒性,可有效克服系统的非线性,控制效果明显优于常规的串级PID控制和参数匹配的Smith预估控制系统.  相似文献   

13.
Describes a methodology for the systematic design of fuzzy PID controllers based on theoretical fuzzy analysis and, genetic-based optimization. An important feature of the proposed controller is its simple structure. It uses a one-input fuzzy inference with three rules and at most six tuning parameters. A closed-form solution for the control action is defined in terms of the nonlinear tuning parameters. The nonlinear proportional gain is explicitly derived in the error domain. A conservative design strategy is proposed for realizing a guaranteed-PID-performance (GPP) fuzzy controller. This strategy suggests that a fuzzy PID controller should be able to produce a linear function from its nonlinearity tuning of the system. The proposed PID system is able to produce a close approximation of a linear function for approximating the GPP system. This GPP system, incorporated with a genetic solver for the optimization, will provide the performance no worse than the corresponding linear controller with respect to the specific performance criteria. Two indexes, linearity approximation index (LAI) and nonlinearity variation index (NVI), are suggested for evaluating the nonlinear design of fuzzy controllers. The proposed control system has been applied to several first-order, second-order, and fifth-order processes. Simulation results show that the proposed fuzzy PID controller produces superior control performance to the conventional PID controllers, particularly in handling nonlinearities due to time delay and saturation  相似文献   

14.
This study demonstrates the use of an on-line neural network to calculate process set points for PID controllers in a manufacturing process such as the automated thermoplastic tow-placement (ATP) technique. The set points are computed by the neural network so that the throughput is near maximum and a desired minimum quality is maintained. A novel neural network predictive scheme is developed to enable performance over a wide range of processing inputs. Process history can greatly affect the final part quality and, therefore, is an integral part of the method for determining the set points. The system is first trained and tested in simulation and then validated for the highly non-linear ATP process resulting in significantly improved process operation. The developed approach is applicable to many other manufacturing processes where process simulations exist and conventional control techniques are lacking.  相似文献   

15.
设计了一种新的模糊PID控制器。用基于给定的相角裕度和幅值裕度的方法给出了PID控制器参数的初值。在运行过程中 ,用模糊控制器在线调整PID参数 ,使过程具有较高的控制品质  相似文献   

16.
In this paper, an optimized Genetic Algorithm (GA) based internal model controller-proportional integral derivative (IMC-PID) controller has been designed for the control variable to output variable transfer function of dc-dc boost converter to mitigate the effect of non-minimum phase (NMP) behavior due to the presence of a right-half plane zero (RHPZ). This RHPZ limits the dynamic performance of the converter and leads to internal instability. The IMC PID is a streamlined counterpart of the standard feedback controller and easily achieves optimal set point and load change performance with a single filter tuning parameter λ. Also, this paper addresses the influences of the model-based controller with model plant mismatch on the closed-loop control. The conventional IMC PID design is realized as an optimization problem with a resilient controller being determined through a genetic algorithm. Computed results suggested that GA–IMC PID coheres to the optimum designs with a fast convergence rate and outperforms conventional IMC PID controllers.  相似文献   

17.
机载雷达稳定平台是根据陀螺仪采集到载机角速度信息,驱动直流伺服电机采用反向运动补偿原理工作,以保证机载雷达成像稳定,清晰。为了提高机载雷达稳定平台的响应性能和抗干扰能力,提出一种模糊PID串级控制方案,根据陀螺仪所采集的角速度信息和编码器反馈的角度位置信息,采用速度模糊PID控制和位置模糊PID控制串联的形式对直流伺服电机进行控制。经MATLAB仿真实验证明,模糊PID串级控制比传统单级PID控制以及传统PID串级控制具有更优秀的响应性能以及抗干扰能力,更加适合复杂环境下机载雷达稳定平台的稳定要求。  相似文献   

18.
Parallel cascade control strategies, to improve the dynamic performance of a control system, have been proposed earlier mainly for control of stable processes. In this paper, further results are presented for a new parallel cascade control structure and controller design for controlling stable, unstable or integrating processes with time delay. The design of the disturbance rejection controllers and the setpoint filter are based on loop shaping and ISE performance measures, respectively. A modified Smith predictor scheme is used in the primary loop to enhance the closed-loop performance of the system. The stabilization, robustness and performances of time delay processes are analyzed. The disturbance rejection capability of the proposed scheme is superior as compared to some existing methods. Examples are given to illustrate the usefulness of the proposed method and its superiority over some parallel cascade control schemes.  相似文献   

19.
Although the PI or PID (PI/PID) controllers have many advantages, their control performance may be degraded when the controlled object is highly nonlinear and uncertain; the main problem is related to static nature of fixed-gain PI/PID controllers. This work aims to propose a wavelet neural adaptive proportional plus conventional integral-derivative (WNAP+ID) controller to solve the PI/PID controller problems. To create an adaptive nature for PI/PID controller and for online processing of the error signal, this work subtly employs a one to one offline trained self-recurrent wavelet neural network as a processing unit (SRWNN-PU) in series connection with the fixed-proportional gain of conventional PI/PID controller. Offline training of the SRWNN-PU can be performed with any virtual training samples, independent of plant data, and it is thus possible to use a generalized SRWNN-PU for any systems. Employing a SRWNN-identifier (SRWNNI), the SRWNN-PU parameters are then updated online to process the error signal and minimize a control cost function in real-time operation. Although the proposed WNAP+ID is not limited to power system applications, it is used as supplementary damping controller of static synchronous series compensator (SSSC) of two SSSC-aided power systems to enhance the transient stability. The nonlinear time-domain simulation and system performance characteristics in terms of ITAE revealed that the WNAP+ID has more control proficiency in comparison to PID controller. As additional simulations, the features of the proposed controller are compared to those of the literature while some of its promising features like its fast noise-rejection ability and its high online adapting ability are also highlighted.  相似文献   

20.
基于单神经元自适应PID的过热汽温控制系统研究   总被引:1,自引:0,他引:1  
针对过热汽温控制系统各环节的非线性时变性特征,提出了一种单神经元自适应PID控制方案,并通过编制仿真程序对系统进行了仿真实验,实验结果表明,采用单神经元自适应PID控制的过热汽温调节系统,较常规PID控制,具有更小的超调量和更好的鲁棒性,有效地改善了常规PID调节时间长自适应能力差的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号