首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Rail players around the world have been increasing axle loads to improve the productivity of freight and heavy haul operations. This has increased the risk of surface cracks at curves because of rolling contact fatigue. Rail grinding has been considered an effective process for controlling these cracks and reducing risks of rail breaks. The complexity of deciding the optimal rail grinding intervals for improving the reliability and safety of rails is because of insufficient understanding of the various factors involved in the crack initiation and propagation process. This paper focuses on identifying the factors influencing rail degradation, developing models for rail failures and analyzing the costs of various grinding intervals for economic decision making. Various costs involved in rail maintenance, such as rail grinding, downtime, inspection, rail failures and derailment, and replacement of worn‐out rails, are incorporated into the total cost model developed in this paper. Field data from the rail industry have been used for illustration.  相似文献   

2.
In this article, artificial neural network (ANN) is adopted to predict photovoltaic (PV) panel behaviors under realistic weather conditions. ANN results are compared with analytical four and five parameter models of PV module. The inputs of the models are the daily total irradiation, air temperature and module voltage, while the outputs are the current and power generated by the panel. Analytical models of PV modules, based on the manufacturer datasheet values, are simulated through Matlab/Simulink environment. Multilayer perceptron is used to predict the operating current and power of the PV module. The best network configuration to predict panel current had a 3–7–4–1 topology. So, this two hidden layer topology was selected as the best model for predicting panel current with similar conditions. Results obtained from the PV module simulation and the optimal ANN model has been validated experimentally. Results showed that ANN model provide a better prediction of the current and power of the PV module than the analytical models. The coefficient of determination (R2), mean square error (MSE) and the mean absolute percentage error (MAPE) values for the optimal ANN model were 0.971, 0.002 and 0.107, respectively. A comparative study among ANN and analytical models was also carried out. Among the analytical models, the five-parameter model, with MAPE = 0.112, MSE = 0.0026 and R2 = 0.919, gave better prediction than the four-parameter model (with MAPE = 0.152, MSE = 0.0052 and R2 = 0.905). Overall, the 3–7–4–1 ANN model outperformed four-parameter model, and was marginally better than the five-parameter model.  相似文献   

3.
This study is deals with artificial neural network (ANN) and fuzzy expert system (FES) modelling of a gasoline engine to predict engine power, torque, specific fuel consumption and hydrocarbon emission. In this study, experimental data, which were obtained from experimental studies in a laboratory environment, have been used. Using some of the experimental data for training and testing an ANN for the engine was developed. Also the FES has been developed and realized. In this systems output parameters power, torque, specific fuel consumption and hydrocarbon emission have been determined using input parameters intake valve opening advance and engine speed. When experimental data and results obtained from ANN and FES were compared by t-test in SPSS and regression analysis in Matlab, it was determined that both groups of data are consistent with each other for p > 0.05 confidence interval and differences were statistically not significant. As a result, it has been shown that developed ANN and FES can be used reliably in automotive industry and engineering instead of experimental work.  相似文献   

4.
To solve the speaker independent emotion recognition problem, a three-level speech emotion recognition model is proposed to classify six speech emotions, including sadness, anger, surprise, fear, happiness and disgust from coarse to fine. For each level, appropriate features are selected from 288 candidates by using Fisher rate which is also regarded as input parameter for Support Vector Machine (SVM). In order to evaluate the proposed system, principal component analysis (PCA) for dimension reduction and artificial neural network (ANN) for classification are adopted to design four comparative experiments, including Fisher + SVM, PCA + SVM, Fisher + ANN, PCA + ANN. The experimental results proved that Fisher is better than PCA for dimension reduction, and SVM is more expansible than ANN for speaker independent speech emotion recognition. The average recognition rates for each level are 86.5%, 68.5% and 50.2% respectively.  相似文献   

5.
In this study, two types of solar air collectors are constructed and examined experimentally. The types are called as zigzagged absorber surface type and flat absorber surface type called Model I and Model II respectively. Experiments are carried out between 10.00 and 17.00 h in August and September under the prevailing weather conditions of Karabuk (city of the Turkey) for 5 days. Then, thermal performances belongs to experimental systems are calculated by using data obtained from experiments. To estimate thermal performances of solar air collectors an artificial neural network (ANN) model is designed. The measured data and calculated performance values are used at the design of Levenberg–Marquardt (LM) based multi-layer perceptron (MLP) in Matlab nftool module. Calculated values of thermal performances are compared to predicted values. Statistical error analysis is used to evaluate results. Comparing and statistical results demonstrate effectiveness of the proposed ANN. Also reliability of ANN and meaningfulness of input variables are tested via applying stepwise regression method to the data used in designing ANN.  相似文献   

6.
This study investigated the effects of upstream stations’ flow records on the performance of artificial neural network (ANN) models for predicting daily watershed runoff. As a comparison, a multiple linear regression (MLR) analysis was also examined using various statistical indices. Five streamflow measuring stations on the Cahaba River, Alabama, were selected as case studies. Two different ANN models, multi layer feed forward neural network using Levenberg–Marquardt learning algorithm (LMFF) and radial basis function (RBF), were introduced in this paper. These models were then used to forecast one day ahead streamflows. The correlation analysis was applied for determining the architecture of each ANN model in terms of input variables. Several statistical criteria (RMSE, MAE and coefficient of correlation) were used to check the model accuracy in comparison with the observed data by means of K-fold cross validation method. Additionally, residual analysis was applied for the model results. The comparison results revealed that using upstream records could significantly increase the accuracy of ANN and MLR models in predicting daily stream flows (by around 30%). The comparison of the prediction accuracy of both ANN models (LMFF and RBF) and linear regression method indicated that the ANN approaches were more accurate than the MLR in predicting streamflow dynamics. The LMFF model was able to improve the average of root mean square error (RMSEave) and average of mean absolute percentage error (MAPEave) values of the multiple linear regression forecasts by about 18% and 21%, respectively. In spite of the fact that the RBF model acted better for predicting the highest range of flow rate (flood events, RMSEave/RBF = 26.8 m3/s vs. RMSEave/LMFF = 40.2 m3/s), in general, the results suggested that the LMFF method was somehow superior to the RBF method in predicting watershed runoff (RMSE/LMFF = 18.8 m3/s vs. RMSE/RBF = 19.2 m3/s). Eventually, statistical differences between measured and predicted medians were evaluated using Mann-Whitney test, and differences in variances were evaluated using the Levene's test.  相似文献   

7.
In this study, an artificial neural networks study was carried out to predict the compressive strength of ground granulated blast furnace slag concrete. A data set of a laboratory work, in which a total of 45 concretes were produced, was utilized in the ANNs study. The concrete mixture parameters were three different water–cement ratios (0.3, 0.4, and 0.5), three different cement dosages (350, 400, and 450 kg/m3) and four partial slag replacement ratios (20%, 40%, 60%, and 80%). Compressive strengths of moist cured specimens (22 ± 2 °C) were measured at 3, 7, 28, 90, and 360 days. ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of six input parameters that cover the cement, ground granulated blast furnace slag, water, hyperplasticizer, aggregate and age of samples and, an output parameter which is compressive strength of concrete. The results showed that ANN can be an alternative approach for the predicting the compressive strength of ground granulated blast furnace slag concrete using concrete ingredients as input parameters.  相似文献   

8.
The accurate prediction of air temperature is important in many areas of decision-making including agricultural management, transportation and energy management. Previous research has focused on the development of artificial neural network (ANN) models to predict air temperature from one to twelve hours in advance. The inputs to these models included a constant duration of prior data with a fixed resolution for all environmental variables for all prediction horizons. The overall goal of this research was to develop more accurate ANN models that could predict air temperature for each prediction horizon. The specific objective was to determine if the ANN model accuracy could be improved by applying a genetic algorithm (GA) for each prediction horizon to determine the preferred duration and resolution of input prior data for each environmental variable. The ANN models created based on this GA based approach provided smaller errors than the models created based on the existing constant duration and fixed data resolution approach for all twelve prediction horizons. Except for a few cases, the GA generally included a longer duration for prior air temperature data and shorter durations for other environmental variables. The mean absolute errors (MAEs) for the evaluation input patterns of the one-, four-, eight-, and twelve-hour prediction models that were based on this GA approach were 0.564 °C, 1.264 °C, 1.766 °C and 2.018 °C, respectively. These MAEs were improvements of 3.98%, 4.59%, 2.55% and 1.70% compared to the models that were created based on the existing approach for the same corresponding prediction horizons. Thus, the GA based approach to determine the duration and resolution of prior input data resulted in more accurate ANN models than the existing ones for air temperature prediction. Future work could examine the effects of various GA and fitness evaluation parameters that were part of the approach used in this study.  相似文献   

9.
The absolute free energy difference of binding (ΔG) between neuraminidase and its inhibitor was evaluated using fast pulling of ligand (FPL) method over steered molecular dynamics (SMD) simulations. The metric was computed through linear interaction approximation. Binding nature was described by free energy differences of electrostatic and van der Waals (vdW) interactions. The finding indicates that vdW metric is dominant over electrostatics in binding process. The computed values are in good agreement with experimental data with a correlation coefficient of R = 0.82 and error of σΔGexp = 2.2 kcal/mol. The results were observed using Amber99SB-ILDN force field in comparison with CHARMM27 and GROMOS96 43a1 force fields. Obtained results may stimulate the search for an Influenza therapy.  相似文献   

10.
Advances in field of artificial intelligence (AI) offers opportunities of utilizing new algorithms and models that enable researchers to solve the most complex systems. As in other engineering fields, AI methods have widely been used in geotechnical engineering. Unlikely, there seems quite insufficient number of research related to the use of AI methods for the estimation of California bearing ratio (CBR). There were actually some attempts to develop prediction models for CBR, but most of these models were essentially statistical correlations. Nevertheless, many of these statistical correlation equations generally produce unsatisfactory CBR values. However, this paper is likely one of the very first research which aims to investigate the applicability of AI methods for prediction of CBR. In this context, artificial neural network (ANN) and gene expression programming (GEP) were applied for the prediction of CBR of fine grained soils from Southeast Anatolia Region/Turkey. Using CBR test data of fine grained soils, some proper models are successfully developed. The results have shown that the both ANN and GEP are found to be able to learn the relation between CBR and basic soil properties. Additionally, sensitivity analysis is performed and it is found that maximum dry unit weight (γd) is the most effective parameter on CBR among the others such as plasticity index (PI), optimum moisture content (wopt), sand content (S), clay + silt content (C + S), liquid limit (LL) and gravel content (G) respectively.  相似文献   

11.
This article discusses on the detection of fault occurred during friction stir welding using discrete wavelet transform on force and torque signals. The work pieces used were AA1100 aluminum alloys of thickness 2.5 mm. The plates were 200 mm in length and 80 mm in width. Presence of defect in welding causes sudden change in force signals (Z-load), thus it is easier to detect such abrupt changes in a signal using discrete wavelet transform. Statistical features like variance and square of errors of detail coefficients are implemented to localize the defective zone properly as it shows better variations (in defective area) than the detail coefficient itself.  相似文献   

12.
This study consists of two cases: (i) The experimental analysis: Shot peening is a method to improve the resistance of metal pieces to fatigue by creating regions of residual stress. In this study, the residual stresses induced in steel specimen type C-1020 by applying various strengths of shot peening, are investigated using the electrochemical layer removal method. The best result is obtained using 0.26 mm A peening strength and the stress encountered in the shot peened material is ?276 MPa, while the maximum residual stress obtained is ?363 MPa at a peening strength of 0.43 mm A. (ii) The mathematical modelling analysis: The use of ANN has been proposed to determine the residual stresses based on various strengths of shot peening using results of experimental analysis. The back-propagation learning algorithm with two different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. The best fitting training data set was obtained with four neurons in the hidden layer, which made it possible to predict residual stress with accuracy at least as good as that of the experimental error, over the whole experimental range. After training, it was found the R2 values are 0.996112 and 0.99896 for annealed before peening and shot peened only, respectively. Similarly, these values for testing data are 0.995858 and 0.999143, respectively. As seen from the results of mathematical modelling, the calculated residual stresses are obviously within acceptable uncertainties.  相似文献   

13.
The goal of this study is to develop an accurate artificial neural network (ANN)-based model to predict maximal oxygen uptake (VO2max) of fit adults from a single stage submaximal treadmill jogging test. Participants (81 males and 45 females), aged from 17 to 40 years, successfully completed a maximal graded exercise test (GXT) to determine VO2max. The variables; gender, age, body mass, steady-state heart rate and jogging speed are used to build the ANN prediction model. Using 10-fold cross validation on the dataset, the average values of standard error of estimate (SEE), Pearson’s correlation coefficient (r) and multiple correlation coefficient (R) of the model are calculated as 1.80 ml kg?1 min?1, 0.95 and 0.93, respectively. Compared with the results of the other prediction models in literature that were developed using Multiple Linear Regression Analysis, the reported values of SEE, r and R in this study are considerably more accurate.  相似文献   

14.
Artificial neural network (ANN) approach was used to design an optimum Ni/Al2O3 catalyst for the production of hydrogen by the catalytic reforming of crude ethanol based on determining the inter-relationships between catalyst-preparation methods, nickel loading, catalyst characteristics and catalyst performance. ANN could predict hydrogen production performance of various Ni/Al2O3 catalysts of various elemental compositions and methods of preparation in the production of hydrogen by the catalytic reforming of crude ethanol in terms of crude-ethanol conversion, hydrogen selectivity and hydrogen yield. Specifically on catalyst design, ANN was used to determine the optimum catalyst conditions for obtaining maximum hydrogen production performance of a Ni/Al2O3 catalyst for the production of hydrogen by the catalytic reforming of crude ethanol. The optimal hydrogen yield was 4.4 mol %, and the associated crude-ethanol conversion and H2 selectivity for the optimal hydrogen yield were 79.6 and 91.4 mol%, respectively. The optimal catalyst was the one prepared by the coprecipitation method with the optimal nickel loading of 12.4 wt% and an optimal aluminum composition of 42.5 wt%.  相似文献   

15.
In this study, an approach based on artificial neural network (ANN) was proposed to predict the experimental cutting temperatures generated in orthogonal turning of AISI 316L stainless steel. Experimental and numerical analyses of the cutting forces were carried out to numerically obtain the cutting temperature. For this purpose, cutting tests were conducted using coated (TiCN + Al2O3 + TiN and Al2O3) and uncoated cemented carbide inserts. The Deform-2D programme was used for numerical modelling and the Johnson–Cook (J–C) material model was used. The numerical cutting forces for the coated and uncoated tools were compared with the experimental results. On the other hand, the cutting temperature value for each cutting tool was numerically obtained. The artificial neural network model was used to predict numerical cutting temperatures by means of the numerical cutting forces. The best results in predicting the cutting temperature were obtained using the network architecture with a hidden layer which has seven neurons and LM learning algorithm. Finally, the experimental cutting temperatures were predicted by entering the experimental cutting forces into a formula obtained from the artificial neural networks. Statistical results (R2, RMSE, MEP) were quite satisfactory. This demonstrates that the established ANN model is a powerful one for predicting the experimental cutting temperatures.  相似文献   

16.
A new wavelet-support vector machine conjunction model for daily precipitation forecast is proposed in this study. The conjunction method combining two methods, discrete wavelet transform and support vector machine, is compared with the single support vector machine for one-day-ahead precipitation forecasting. Daily precipitation data from Izmir and Afyon stations in Turkey are used in the study. The root mean square errors (RMSE), mean absolute errors (MAE), and correlation coefficient (R) statistics are used for the comparing criteria. The comparison results indicate that the conjunction method could increase the forecast accuracy and perform better than the single support vector machine. For the Izmir and Afyon stations, it is found that the conjunction models with RMSE=46.5 mm, MAE=13.6 mm, R=0.782 and RMSE=21.4 mm, MAE=9.0 mm, R=0.815 in test period is superior in forecasting daily precipitations than the best accurate support vector regression models with RMSE=71.6 mm, MAE=19.6 mm, R=0.276 and RMSE=38.7 mm, MAE=14.2 mm, R=0.103, respectively. The ANN method was also employed for the same data set and found that there is a slight difference between ANN and SVR methods.  相似文献   

17.
This paper reports on the measurements of displacement and blocking force of piezoelectric micro-cantilevers. The free displacement was studied using a surface profiler and a laser vibrometer. The experimental data were compared with an analytical model which showed that the PZT thin film has a Young's modulus of 110 GPa and a piezoelectric coefficient d31,f of 30 pC/N. The blocking force was investigated by means of a micro-machined silicon force sensor based on the silicon piezoresistive effect. The generated force was detected by measuring a change in voltage within a piezoresistors bridge. The sensor was calibrated using a commercial nano-indenter as a force and displacement standard. Application of the method showed that a 700 μm long micro-cantilever showed a maximum displacement of 800 nm and a blocking force of 0.1 mN at an actuation voltage of 5 V, within experimental error of the theoretical predictions based on the known piezoelectric and elastic properties of the PZT film.  相似文献   

18.
The utilization of mathematical and computational tools for pollutant assessment frameworks has become increasingly valuable due to the capability to interpret integrated variable measurements. Artificial neural networks (ANNs) are considered as dependable and inexpensive techniques for data interpretation and prediction. The self-organizing map (SOM) is an unsupervised ANN used for data training to classify and effectively recognize patterns embedded in the input data space. Application of SOM–ANN is useful for recognizing spatial patterns in contaminated zones by integrating chemical, physical, ecotoxicological and toxicokinetic variables in the identification of pollution sources and similarities in the quality of the samples. Water (n = 11), soil (n = 38) and sediment (n = 54) samples from four areas in the Niger Delta (Nigeria) were classified based on their chemical, toxicological and physical variables applying the SOM. The results obtained in this study provided valuable assessment using the SOM visualization capabilities and highlighted zones of priority that might require additional investigations and also provide productive pathway for effective decision making and remedial actions.  相似文献   

19.
This paper presents the use of simulated annealing metaheuristic for tuning Mamdani type fuzzy models. Structure of the Mamdani fuzzy model is learned from input–output data pairs using Wang and Mendel’s method and fuzzy c-means clustering algorithm. Then, parameters of the fuzzy system are tuned through simulated annealing. In this paper, we perform experiments to examine effects of (a) initial solution generated by Wang and Mendel’s method and fuzzy c-means clustering method, (b) membership function update procedure, (c) probability parameter for the calculation of the initial temperature, (d) temperature update coefficient used for cooling schedule, and (e) randomness level in the disturbance mechanism used in simulated annealing algorithm on the tuning of Mamdani type fuzzy models. Experiments are performed with Mackey–Glass chaotic time series. The results indicate that Wang and Mendel’s method provides better starting configuration for simulated annealing compared to fuzzy c-means clustering method, and for the membership function update parameter, MFChangeRate   (0, 1], and the probability parameter for the calculation of the initial temperature, P0   (0, 1), values close to zero produced better results.  相似文献   

20.
Two methods, both based on the concept of combustion net torque, for estimation of combustion properties using measurements of crankshaft torque data are investigated in this work. The first of the proposed methods estimates entire burned mass fraction traces from corresponding combustion net torque traces. This is done by solving a convex optimization problem that is based on a derived analytical relation between the two quantities. The other proposed estimation method estimates the well established combustion phasing measure referred to as 50% burned mass fraction directly from combustion net torque using a nonlinear black-box mapping. The methods are assessed using both simulations and experimental data gathered from a 5-cylinder light-duty diesel engine equipped with a crankshaft torque sensor and cylinder pressure sensors that are used for reference measurements. The results indicate that both methods work well but the method that estimates entire burned mass fraction traces is more sensitive to torque data quality. Based on the experimental crankshaft torque data, the direct combustion phasing estimation method delivers estimates with a bias of less than 1 CAD and a cycle-to-cycle standard deviation of less than 2.7 CAD for all cylinders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号