首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin film chalcopyrite solar cells grown on light-weight, flexible substrates are an appealing product. An insulating barrier layer is a requisite for flexible steel substrates to protect the chalcopyrite absorber layer from in-diffusion of iron and also to isolate the solar module, electrically, from the metal substrate. Spray pyrolysis is presented here as a means to deposit an aluminium oxide barrier layer. Optimised spray deposition conditions are investigated and subsequent solar cell results are presented. Resistivity measurements in conjunction with thermography allow assessment of the barrier layer’s insulating properties and occurrence of pin-holes in the layer. Resulting Cu(In,Ga)Se2 cells, with a barrier layer, reach an efficiency of 14.4%.  相似文献   

2.
This paper describes the investigations of CIS-based solar cells with a new InxSey (IS) buffer layer. Studies were concentrated on determining the deposition conditions to get InxSey thin films with adequate properties to be used in substitution of the CdS buffer layer, usually employed in the fabrication of this type of devices. Before the solar cell fabrication, the buffer layers grown by evaporation of the In2Se3 compound were characterized through transmittance and X-ray diffraction measurements. It was found that good results can be obtained using indium selenide film as the buffer layer, grown in the In2Se3 phase.Solar cells with structure Mo/CIS/In2Se3/ZnO were fabricated. The ZnO layer was deposited by reactive evaporation and the absorber CIS layer was grown on Mo by a two-stage process. The preliminary results obtained with this type of solar cells are Jsc=30.8 mA/cm2, Voc=0.445 V, FF≈0.6 and η=8.3% with an irradiance of 100 mW/cm2. Solar cells fabricated using a CdS buffer layer deposited by CBD on CIS substrate, prepared under the same conditions used in the fabrication of Mo/CIS/In2Se3/ZnO cells, gave the following results: Voc=0.43 V, Jsc=34 mA/cm2, FF≈0.63 and η=9.2%.  相似文献   

3.
Abstract

Extremely thin absorber (eta) solar cells aim to combine the advantages of using very thin, easily and cheaply produced absorber layers on nanostructured substrates with the stability of all-solid-state solar cells using inorganic absorber layers. The concept of using nanostructured substrates originated from the dye-sensitised solar cell, where having a very high surface area allows the use of very thin layers of dye while still absorbing sufficient sunlight. However, both the dye and liquid electrolyte used in these devices demonstrated poor stability, and efforts were made to replace them with very thin inorganic absorber layers and solid state hole collectors respectively. The combination of these concepts – a nanostructured substrate coated with a very thin inorganic absorber and completed with a solid state hole collector – is known as an eta solar cell. This review summarises the development of both the inorganic absorbers and solid state hole collectors in porous TiO2 and ZnO nanorod based cells, focusing on the material properties and growth/deposition methods. Future possibilities for eta solar cells are discussed, including utilisation of a wider range of materials, synthesis methods and novel materials such as quantum dots to produce tuned band gap and multijunction solar cells.  相似文献   

4.
Using the Bridgman method, ingots of CuInSe2 have been grown, which are microcrackfree, void-free and adhesion-free. From these, p-type substrates have been obtained for the fabrication of preliminary CIS/CdS/ZnO and CIS/CdS/CdO photovoltaic cells, where the window layers were deposited, respectively, by rf sputtering from a ZnO target and by dc reactive sputtering from a Cd target and where the CdS buffer layer was deposited by a chemical bath method. These cells have yielded approximate illuminated jjsc, Voc,η and FF values, respectively, up to 28 mA/cm2, 0.42 V, 5% and 0.41 for effective areas of 7 to 22 mm2.  相似文献   

5.
This work presents results from a study carried out on the Mo/CuInS2/ZnS stacked layers, using high-resolution transmission electron microscopy (HRTEM). This system will be used later for the fabrication of solar cells with Mo/CuInS2/ZnS/TCO structure, where the layers conforming it will perform as an electrical contact, absorber layer and buffer layer, respectively. The layers of the Mo/CuInS2/ZnS system were deposited sequentially on soda lime glass substrates. The Mo film was deposited by DC magnetron sputtering, the CuInS2 (CIS) layer was grown by co-evaporation of precursors in a two-stage process and the ZnS was deposited by co-evaporation and by CBD (chemical bath deposition) using a solution containing zinc acetate, sodium citrate, ammonia and thiourea.The performed study provided significant information regarding crystalline structure, grain boundaries and defects visualization of each one of the layers as well as of the Mo/CuInS2 and CuInS2/ZnS interfaces.  相似文献   

6.
The electrodeposition of CuInSe2 is investigated to improve the stoichiometric properties of CuInSe2 layers on indium tin oxide (ITO)-coated glass substrates and to develop one-step electrodeposition method for solar cell applications. XPS was utilized for the characterization of the surface properties of CuInSe2 layers. The influence of the complexing agent, e.g. benzotriazole, bulk concentration of Cu and Se and deposition potentials on the stoichiometric properties, are discussed.  相似文献   

7.
A continuous and compact hole‐blocking layer is crucial to prevent photocurrent recombination at the photoanode/electrode interface of high‐performance mesostructure perovskite‐based solar cells. Novel TiO2/ZnO/TiO2 sandwich multi‐layer compact film prepared as hole‐blocking layer for perovskite solar cell. Herein, TiO2, ZnO, and TiO2 layers were successfully deposited by spin‐coating onto FTO glass substrate in sequence. The fill factor and power conversion efficiency of the perovskite solar cell are remarkably improved by the employment of a TiO2/ZnO/TiO2 sandwich compact layer. Perovskite solar cell based on TiO2/ZnO/TiO2 sandwich film has been observed to exhibit maximum incident‐photon‐to‐current conversion efficiency in the visible region (400–780 nm) and reach a power conversion efficiency of 12.8% under AM1.5G illumination. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Inverted transparent polymer solar cells were fabricated by sequentially depositing several organic layers from fluids, on ITO/glass substrates. ITO was used as a cathode to collect electrons. The photovoltage of these diodes can be increased by up to 400 mV by inserting a buffer layer of polyethylene oxide between ITO and the active layers, which results in 4-fold enhancement of power conversion efficiency under the illumination of 100 mW/cm2 simulated AM1.5 solar light. The enhancement of Voc is consistent with the work function change between ITO and ITO/PEO measured by photoelectron spectroscopy. Solar cell production without vacuum processing may lower production costs.  相似文献   

9.
Co-sputtered copper-indium (Cu-In) alloy layers were investigated as precursors for CuInSe2 (CIS) formation. Results of scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD) studies reveal the inhomogeneity of the films composition. The films have a rough surface structure with well-defined islands crystallized within the film matrix. The elemental composition of the island-type crystals corresponds to the compound CuIn2 and the composition of the matrix area corresponds to the Cu11In9 phase. The influence of heating temperature, time and Se pressure on the morphology and composition of films is studied using SEM, XRD and Raman spectroscopies. Thereby optimal technological parameters for the production of single-phase CIS layers are determined.  相似文献   

10.
In this contribution we present an in situ method for the preparation of CuInS2-poly(3-(ethyl-4-butanoate)thiophene) (P3EBT) nanocomposite layers and their application in nanocomposite solar cells. A precursor solution containing copper and indium salts, thiourea and the conjugated polymer was prepared in pyridine, which was coated onto glass/ITO substrates followed by a heating step at 180 °C. The heating step induced the formation of the CuInS2 nanoparticles homogeneously dispersed in the conjugated polymer matrix. The formation of the nanocomposite was investigated in situ by X-ray scattering techniques and TEM methods showing that nano-scaled CuInS2 was formed. By addition of small amounts of zinc salt to the precursor solution, zinc containing CuInS2 (ZCIS) was formed. ZCIS-P3EBT active layers exhibited higher VOC than CuInS2-P3EBT layers and showed efficiencies of about 0.4%. Additionally the stability of the solar cells was tested over a time scale of 172 h.  相似文献   

11.
This work is aimed at the formation of dense anode coatings of yttria-stabilized zirconia (YSZ) and samarium-doped barium cerate BaCe0.8Sm0.2O3-δ (BCS) on the Ce0.8Sm0.2O2-δ electrolyte to increase the performance of a single fuel cell on its base. Materials are obtained by precipitation from a nitrate solution (YSZ-disp), by laser vaporization-condensation (YSZ-lec) and citrate-nitrate method (BCS). YSZ and BCS coatings on SDC substrates were obtained by electrophoretic deposition (EPD) followed by sintering at 1300–1500 °C. Two methods are applied to ensure surface conductivity of the SDC substrates for successful EPD: by synthesizing a conducting polymer - polypyrrole and by depositing a buffer layer of finely dispersed Pt. The main problem of the formation of the dense YSZ layers on the SDC substrates has been revealed, which is associated with their delamination during high-temperature sintering due to thermal expansion mismatch. It is shown that the use of a Pt buffer sublayer makes it possible to avoid delamination during sintering at a temperature of 1500 °C. The BCS barrier layers are shown to be completely compatible with SDC. The influence of the YSZ and BCS barrier layers on the ohmic and polarization resistance values and the open circuit voltage (OCV) values is discussed.  相似文献   

12.
Beneficial effects of polythiophen layers on ruthenium (Ru) photosensitizer in dye-sensitized solar cells (DSSCs) are observed. The thiophene is photoelectrochemically polymerized by the photoexcitation of Ru photosensitizers on TiO2. In situ polymerization enables the formation of uniform polythiophene layers on Ru-complexes/TiO2. The polythiophene layers have hydrophobic nature and bridge the energy level between Ru-complexes and iodine/iodide, which suppress the recombination reaction and improve the concentration of photoinjected electron in TiO2 layers. The DSSCs with polythiophene protecting layers shows a power conversion efficiency of 6.01%, which is a 30% increase compared to one without polythiophene layers.  相似文献   

13.
Thin film solar cells with chalcopyrite CuInSe2/Cu(InGa)Se2 (CIS/CIGS) absorber layers have attracted significant research interest as an important light-to-electricity converter with widespread commercialization prospects. When compared to the ternary CIS, the quaternary CIGS has more desirable optical band gap and has been found to be the most efficient among all the CIS-based derivatives. Amid various fabrication methods available for the absorber layer, electrodeposition may be the most effective alternative to the expensive vacuum based techniques. This paper reviewed the developments in the area of electrodeposition for the fabrication of the CIGS absorber layer. The difficulties in incorporating the optimum amount of Ga in the film and the likely mechanism behind the deposition were highlighted. The role of deposition parameters was discussed along with the phase and microstructure variation of an as-electrodeposited CIGS layer from a typical acid bath. Related novel strategies such as individual In, Ga and their binary alloy deposition for applications in CIGS solar cells were briefed.  相似文献   

14.
A novel technique was demonstrated for the growth of CuInSe2 (CIS) thin films. The technique used an ink formulation containing sub-micron size particles of Cu–In alloys. A metallic precursor layer was first formed by coating this ink onto the substrate by spraying. The precursor film was then made to react with Se to form the CIS compound. The morphology of the CIS layers depended on the initial composition of the Cu–In particles as well as the post-deposition treatments. Solar cells were fabricated on CIS absorber layers prepared by this low-cost ink-coating approach and devices with a conversion efficiency of over 10.5% were demonstrated.  相似文献   

15.
ZnO buffer layers were grown by a chemical-bath deposition (CBD) in order to improve the interface quality in p-CuInS2 based solar cells, to improve the light transmission in the blue wavelength region, but also as an alternative to eliminate the toxic cadmium. The process consists of immersion of different substrates (glass, CIS) in a dilute solution of tetraamminezinc II, [Zn(NH2)4]2+, complex at 60–95°C. During the growth process, a homogeneous growth mechanism which proceeds by the sedimentation of a mixture of ZnO and Zn(OH)2 clusters formed in solution, competes with the heterogeneous growth mechanism. The mechanism consists of specific adsorption of a complex Zn(II) followed by a chemical reaction. The last process of growth results in thin, hard, adherent and specularly reflecting films. The characterization of the deposited CBD-ZnO layers was performed by X-ray diffraction (XRD), optical transmittance, scanning electron microscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The as-deposited films on glass show hexagonal zincite structure with two preferred orientations (1 0 0) and (1 0 1). High optical transmittance up to 80% in the near-infrared and part of the visible region was observed. The low growth rate of the films on CIS suggests an atomic layer-by-layer growth process.The device parameters and performance are compared to heterojunction with a standard CdS buffer layer.  相似文献   

16.
We have developed the flexible Cu(In,Ga)Se2 (CIGS) solar cells on the stainless steel substrates with the insulating layer for the fabrication of the integrated module. The CIGS films have strong adhesion to the Mo films with insulating layers. An efficiency of 12.3% was achieved by the flexible CIGS solar cell with a structure of ITO/ZnO/CdS/CIGS/Mo/SiO2/stainless steel. The insertion of the SiO2 insulating layer did not have an influence on the formation of the CIGS film and solar cell performances.  相似文献   

17.
In this study, thin-film Pt catalysts with ultra-low metal loadings (ranging from 1 to 200 μg cm−2) were prepared by magnetron sputtering onto various carbon-based substrates. Performance of these catalysts acting as anode, cathode, or both electrodes in a proton exchange membrane fuel cell (PEMFC) was investigated in H2/O2 and H2/air mode. As base substrates we used standard microporous layers comprising carbon nanoparticles with polytetrafluoroethylene (PTFE) or fluorinated ethylene propylene (FEP) supported on a gas diffusion layer. Some substrates were further modified by magnetron sputtering of carbon in N2 atmosphere (leading to CNx) followed by simultaneous plasma etching and cerium oxide deposition. The CNx structure exhibits higher resistance to electrochemical etching as compared to pure carbon as was determined by mass spectrometry analysis of PEMFC exhaust at different cell potentials for both sides of PEMFC. The role of platinum content and membrane thickness was investigated with the above four different combinations of ionomer-free carbon-based substrates. The results were compared with a series of benchmark electrodes made from commercially available state-of-the-art Pt/C catalysts. It was demonstrated that the platinum utilization in PEMFC with magnetron sputtered thin-film Pt electrodes can be up to 2 orders of magnitude higher than with the standard Pt/C catalysts while keeping the similar power efficiency and long-term stability.  相似文献   

18.
Stacked thin films composed of In2(Se,S)3 and CuIn(Se,S)2 layers were grown on a fluorine-doped tin oxide (FTO)-coated glass substrate using electrodeposition of the corresponding selenide (In2Se3 and CuInSe2) precursors followed by annealing in H2S flow (5% in Ar). Structural characterizations of both layers revealed that the resulting film quality strongly depended on annealing conditions of both CuIn(Se,S)2 and In2(Se,S)3 layers: a compact and uniform film was obtained by annealing both layers at 400 °C. Performance of Au/CuIn(Se,S)2/In2(Se,S)3/FTO superstrate-type solar cells also followed these structural characteristics, i.e., a preliminary conversion efficiency of 2.9% was obtained on the device based on 400 °C-annealed In2(Se,S)3 and CuIn(Se,S)2 layers.  相似文献   

19.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   

20.
Fully organic solar cells (OSCs) based on polymers and fullerenes have attracted remarkable interest during the last decade and high power conversion efficiencies (PCEs) beyond 8% have been realized. However, air stability of these cells remains poor. The conventional geometry of OSCs utilizes strongly oxidizing metal top contacts like Al or Ca. These metals are easily oxidized in air resulting in rapid decrease of PCE if cells are not perfectly encapsulated. Using a thin electron-selective hole-blocking bottom layer like TiO2 enables fabrication of solar cells in a so-called inverted geometry. In this geometry, noble metals like Ag or Au can be used as top contacts, which are less sensitive to ambient oxygen. Thus, air-stability of these inverted solar cells is significantly improved. In this study we investigate inverted polythiophene-methanofullerene solar cells. We find significant influence of the TiO2 layer thickness on light absorption and illumination stability of the solar cells, as well as the trap filling by photoinduced carriers. Even though TiO2 layers as thick as 500 nm seem not to be detrimental for charge transport, light intensity losses limit the device performance. In turn, illumination stability is better for thicker TiO2 layers, which can serve as UV filters and protect the photoactive materials from degradation, when compared to thin TiO2 layers. Considering these different effects we state that a thickness of 100 nm is the optimization of the TiO2 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号