首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new combustion process called the Plume Ignition Combustion Concept (PCC), in which the plume tail of the hydrogen jet is spark-ignited immediately after the completion of fuel injection to accomplish combustion of a rich mixture has been proposed by the authors. This PCC combustion process markedly reduces nitrogen oxides (NOx) emissions in the high-output region while maintaining high levels of thermal efficiency and power. On the other hand, as burning lean mixture of fuel and air is the conventional way to improve thermal efficiency and reduce NOx, a high λ premixed mixture of hydrogen and air formed by injecting hydrogen in the early stage of the compression stroke has been used in direct-injection hydrogen engines. It was recently reported, however, that this mixture condition does not always offer expected improved thermal efficiency under even lean mixture conditions by increasing unburned hydrogen emissions caused by incomplete flame propagation in the non-uniform and extremely lean portion of the mixture. In this study, the effect of retarding the injection timing to late in the compression stroke but slightly advanced from original PCC was examined as a way of reducing unburned hydrogen emissions and improving thermal efficiency. These effects result from a centroidal axially stratified mixture that positions a fairly rich charge near the spark plug. This stratified mixture is presumably effective in reducing incomplete flame propagation thought to be the cause of unburned hydrogen emissions and also promoting increasing burning velocity of the mixture that improve thermal efficiency. Finally, this research is characterized by measuring the hydrogen fuel concentration at the point and the time of spark ignition quantitatively by spark-induced breakdown spectroscopy in order to identify the changes in mixture ratio mentioned above caused by the parameters involved.  相似文献   

2.
The modifications performed to convert the spark ignition gasoline-fueled internal combustion engine of a Volkswagen Polo 1.4 to run with hydrogen are described. The car is representative of small vehicles widely used for both city and interurban traffic. Main changes included the inlet manifold, gas injectors, oil radiator and the electronic management unit. Injection and ignition advance timing maps were developed for lean mixtures with values of the air to hydrogen equivalence ratio (λ) between 1.6 and 3. The established engine control parameters allowed the safe operation of the hydrogen-fueled engine (H2ICE) free of knock, backfire and pre-ignition as well with reasonably low NOx emissions. The H2ICE reached best brake torque of 63 Nm at 3800 rpm and maximum brake power of 32 kW at 5000 rpm. In general, the brake thermal efficiency of the H2ICE is greater than that of gasoline-fueled engine except for the H2ICE working at very lean conditions (λ = 2.5) and high speeds (above 4000 rpm). A significant effect of the spark advance on the NOx emissions has been found, specially for relatively rich mixtures (λ < 2). Small changes of spark advance with respect to the optimum value for maximum brake torque give rise to an increase of pollutant emissions. It has been estimated that the hydrogen-fueled Volkswagen Polo could reach a maximum speed of 140 km/h with the adapted engine. Moreover, there is enough reserve of power for the vehicle moving on typical urban routes and routes with slopes up to 10%.  相似文献   

3.
Palladium nanoparticles of ∼4 nm were synthesized using spark discharge generation, and their hydrogen storage properties were determined using both thermal desorption spectroscopy (TDS) and Sievert’s (PCT) measurements. PCT measurements indicate that the thermodynamic properties of the nanoparticles towards hydrogen storage differ significantly from that of bulk Pd, even after sintering of the crystallites to 24 nm as determined using X-ray diffraction (XRD). Both the enthalpy and entropy of hydrogen absorption and desorption differ from bulk values, resulting in less hysteresis between absorption and desorption equilibrium plateau pressures and a lowering of the critical temperature of hydride formation Tc by approximately 100 K. The TDS measurements indicate a transition from diffusion to surface-barrier limited hydrogen desorption when going from Pd foil to Pd nanoparticles. This results in a strong decrease in the hydrogen thermal desorption temperatures by ∼160 K during TDS. These results indicate that spark discharge is an interesting method for metal hydride nanoparticle generation.  相似文献   

4.
以台架试验的方法,对不同负荷与点火提前角下天然气掺氢发动机的经济性和排放特性进行了研究,试验中使用了掺氢比为0%~40%的天然气掺氢混合燃料。试验结果表明,随着掺氢比的增加,燃气消耗率呈降低趋势,发动机的经济性得到明显的改善;在不同负荷下,随着掺氢比的增加,NOx与CO的排放都呈增加趋势,CH4的排放呈降低趋势。掺氢比一定时,随着点火提前角和掺氢比的增加,NOx、CH4与CO排放都呈增加趋势,优化点火提前角可以改善天然气发动机的排放。  相似文献   

5.
In this study, an experimental investigation on a naturally aspirated (NA), 8-L spark ignition engine fueled by biogas with various methane concentrations - which we called the N2 dilution test - was performed in terms of its thermal efficiency, combustion characteristics and emissions. The engine was operated at a constant engine rotational speed of 1800 rpm under a 60 kW power output condition and simulated biogas was employed to realize a wide range of changes in heating value and gas composition. The N2 dilution test results show that an increase of inert gas in biogas was beneficial to thermal efficiency enhancement and NOx emission reduction, while exacerbating THC emissions and cyclic variations. Then, as a way to achieve stable combustion for the lowest quality biogas, H2 addition tests were carried out in various excess air ratios. H2 fractions ranging from 5 to 30% were blended to the biogas and the effects of hydrogen addition on engine behavior were evaluated. The engine test results indicated that the addition of hydrogen improved in-cylinder combustion characteristics, extending lean operating limit as well as reducing THC emissions while elevating NOx generation. In terms of efficiency, however, a competition between enhanced combustion stability and increased cooling energy loss was observed with a rise in H2 concentration, maximizing engine efficiency at 5-10% H2 concentration. Moreover, based on the peak efficiency operating point, a set of optimum operating conditions for minimum emissions with the least amount of efficiency loss was suggested in terms of excess air ratio, spark ignition timing, and hydrogen addition rate as one of the main results.  相似文献   

6.
In spite of its known shortcomings as a fuel for spark ignition engines, acetylene has been suggested as a possible alternative to petroleum-based fuels since it can be produced from non-petroleum resources (coal, limestone and water). Therefore, acetylene was evaluated in a single-cylinder engine to investigate performance and emission characteristics with special emphasis on lean operation for NOx control. Testing was carried out at constant speed, constant airflow and MBT spark timing. Equivalence ratio and compression ratio were the primary variables. The engine operated much leaner when fuelled with acetylene than with gasoline. With acetylene, the engine operated at equivalence ratios as lean as 0·53 and 0·43 for compression ratios of 4 and 6, respectively. However, the operating range was very limited. Knock-induced preignition occurred either with compression ratios above 6 or with mixtures richer than 0·69 equivalence ratio. Both the indicated thermal efficiency and power output were less for acetylene fuelling than for gasoline. Acetylene combustion occurred at sufficiently lean equivalence ratios to produce very low NOx and CO emissions. However, when the low NOx levels were achieved hydrocarbon control was not improved over that with gasoline. Despite the potential for NOx control demonstrated in this study of acetylene fuelling, difficulties encountered with engine knock and preignition plus well-known safety problems (wide flammability limits and explosive decomposition) associated with acetylene render this fuel impractical for spark ignition engines.  相似文献   

7.
Methods of quickly and rapidly measuring gas composition in combustion systems are of great practical interest. Optical methods such as Raman spectroscopy are quite useful in understanding fluid mixing, optimizing combustion, and minimizing emissions. However, many existing optical methods are limited by the need for some knowledge of the reaction progress, as they measure mole fractions of molecular reactant or product species. Other methods measure condensed-phase (spray) concentrations before combustion, or flame emission directly, to infer composition. Here we describe the use of laser-induced breakdown spectroscopy (LIBS) for direct measurement of atomic species over a wide range of mixture fractions of C3H8, CH4, and CO2 in air. Atomic emission from a laser-induced plasma is observed and ratios of elemental lines present in the spectra are used to infer composition in reactants and in flames. The method has spatial resolution on the order of 1 mm, and equivalence ratio can be determined from the spectra obtained from a single shot of the laser, avoiding time averaging of signals. In this paper we demonstrate that LIBS can be used to obtain quantitative equivalence ratio measurements for propane and methane in air. The C/(N+O) atomic ratio is used to quantify mixture fraction of C3H8 in air, and data from individual breakdown events have a standard deviation of 3% of the mean for mixtures of 0, 1, and 2% propane in air. The strength of the C, O, and N lines in the spectral window 700-800 nm is investigated for binary mixtures of C3H8, CH4, and CO2 in air. The dependence of the atomic emission on the concentration of carbon and hydrogen is investigated in the present paper, as well as the influence of experimental parameters such as the laser power and the temporal gating of the detector.  相似文献   

8.
This study investigated the effect of varying the spark advance timing and excess air ratio (air excessive ratio; λ) on the combustion and emission of nitrogen oxide (NOx) in a hydrogen-fueled spark ignition engine under part load conditions. The engine test speed was fixed at 2,000 rpm and the torque condition was 60 Nm. Excess air ratio was varied from the stoichiometric (λ = 1) to the lean mixture condition (λ = 2.2) by throttling. The spark advance timing was controlled to determine the maximum brake torque timing (MBT) for each excess air ratio value. Subsequent to the determination of the spark advance timing for MBT, the spark timing was varied from MBT timing to top dead center. Based on the results, it is concluded that the leanest mixture condition (λ = 2.2) with MBT spark timing exhibited the highest brake thermal efficiency of 34.17% and the NOx emissions were as low as 14 ppm.  相似文献   

9.
Yousef S.H. Najjar 《Energy》2011,36(7):4136-4143
The direct-injection stratified charge (DISC) engine is a hybrid between spark ignition (SI) and compression-ignition engines, it combines many of the best features of both with some unique advantages of its own. This includes multi-fuel capability, high thermal efficiency, low NOx production, and low particulate emissions.This work shows how simple semi-global models can predict the performance of the SI and DISC engines with reasonable accuracy, without going to details of modeling for internal processes such as: swirl, mixing and detailed combustion kinetics.The operating variables studied were inlet manifold pressure pi, exhaust manifold pressure pe, engine speed N, equivalence ratio Φ, and volumetric efficiency ηv at different loads. The corresponding performance parameters were the brake mean effective pressure bmep, brake power Pb, and brake thermal efficiency ηb,th. The main contribution of this work is the production of friendly set of curve-fitting correlations for engine performance. The bmep and the Pb increase with the load for both engines. For spark ignition engines the bmep increases by about 70% when load increases from 50% to 100%. With the DISC engine, this ratio increases to 75%. The percent improvement in ηb,th for the DISC to the SI engine is around 50% which increases with part load, lower compression ratio rc and pi.  相似文献   

10.
The unburned H2 can be used to reduce NO emission in conventional TWC (three-way catalyst) for a hydrogen internal combustion engine when it works at equivalence ratio marginally higher than the stoichiometric ratio. To explore the effects and feasibility of this reaction, a Perfectly Stirred Reactor simulation model of TWC has been built with simplified mechanisms. Experiments on a 2.3 L turbocharged hydrogen engine are used to verify the conclusion. It shows that rising initial temperature accelerates the reduction of NO and the maximum reaction rate occurs at 400 °C temperature. The conversion efficiency of NO remains approximately 0 when temperatures below 300 °C. The efficiency reaches a peak value of approximately 98% with 400 °C and declines gradually. The unburned H2 to NO mixing ratio greater than 1.5 in TWC guarantees 100% NO conversion efficiency. The experiments indicate that the NOx concentration decreases from 2056 ppm to 41 ppm at the stoichiometric ratio after the treatment of TWC and NOx reaches 0 ppm with a rich ratio. Results also demonstrate that the suitable reaction temperatures for TWC locate in the range of 400 °C–500 °C. Therefore, if the temperature and the mixing ratio are appropriate, it can achieve zero emissions with NOx reduction by unburned H2 in conventional TWC for a hydrogen engine.  相似文献   

11.
In this study, effects on a spark ignition engine of mixtures of hydrogen and methane have been experimentally considered. This article presents the results of a four-cylinder engine test with mixtures of hydrogen in methane of 0, 10, 20 and 30% by volume. Experiments have been made varying the equivalence ratio. Equivalence ratios have been selected from 0.6 to 1.2. Each fuel has been investigated at 2000 rpm and constant load conditions. The result shows that NO emissions increase, HC, CO and CO2CO2 emission values decrease and brake thermal efficiency (BTE) values increase with increasing hydrogen percentage.  相似文献   

12.
The experimental study was carried out on a multi-cylinder spark ignition engine fueled with hydrogen for analyzing the effect of knocking on backfire and its control by varying operating parameters. The experimental tests were conducted with constant speed at varied equivalence ratio. The equivalence ratio of 0.82 was identified as backfire occurring equivalence ratio (BOER). The backfire was identified by high pitched sound and rise in in-cylinder pressure during suction stroke. In order to analyze backfire at equivalence ratio of 0.82, the combustion analysis was carried out on cyclic basis. Based on the severity of in-cylinder pressure during suction stroke, the backfire can be divided into two categories namely low intensity backfire (LIB) and high intensity backfire (HIB). From this study, it is observed that there is frequent LIB in hydrogen fueled spark ignition engine during suction stroke, which promotes instable combustion and thus knocking at the end of compression stroke. This knocking creates high temperature sources in the combustion chamber and thus causes HIB to occur in the subsequent cycle. A notable salient point emerged from this study is that combustion with knocking can be linked with backfire as probability of backfire occurrence decreases with reduction in chances of knocking. Retarding spark timing and delaying injection timing of hydrogen were found to reduce the chances of backfire occurrence. The backfire limiting spark timing (BLST) and backfire limiting injection timing (BLIT) were found as 12 0bTDC and 40 0aTDC respectively.  相似文献   

13.
This paper describes an experimental study of the effect of hydrogen concentration on the emission and heat transfer characteristics of a laminar premixed LPG-hydrogen flame. The mole fraction of hydrogen in the fuel mixture was varied from 0% to 50%. The equivalence ratio of the fuel/air mixture was kept at stoichiometry and the mixture jet Reynolds number was fixed at Re = 1500 for most of the tests. The results show that upon varying hydrogen content in the fuel mixture, there is a corresponding change in the appearance, pollutant emissions and heat transfer characteristics of the flame.  相似文献   

14.
In this work, an experimental study on the performance and exhaust emissions of a commercial hydrogen fueled spark ignition engine (HFSIE) was performed at partially and full wide open throttle (50% and 100% WOT) positions. The engine is a four-stroke cycle six-cylinder, engine volume of 4.9 L, port fuel injection, hydrogen fueled SI engine with a bore of 102.1 mm, a stroke of 101.1 mm and a compression ratio of 13.5:1. The experiments were performed using 3 different spark plug gaps (SPG) (0.4, 0.6 and 0.8 mm), varied engine speeds of 1000–3000 rpm and two ignition timing values (10 and 15° CA BTDC) at 50% and 100% wide open throttle (WOT). SPG is a factor affecting the performance of the engine depending on the engine structure. Maximum power values were obtained at 0.6 mm SPG for both 50% and 100% WOT at ignition timing values of 10 and 15° CA BTDC. The maximum efficiency values were obtained with a 0.8 mm SPG at 50% WOT. At 100% WOT position, the maximum efficiency values were obtained with a 0.6 mm spark plug gap (SPG) at ignition timing values of 10 and 15° CA BTDC. A significant decrease in NO emission was observed using hydrogen for all WOT and SPGs.  相似文献   

15.
The objective of this study is to evaluate the power, efficiency and emissions of an electronic-controlled single-cylinder engine fueled with pure natural gas and natural gas–hydrogen blends, respectively. Replacing the nature gas with hydrogen/methane blend fuels was found to have a significant influence on engine performance. The effects of excess air ratio and spark timing were discussed. The results show that under certain engine conditions the maximum cylinder gas pressure, maximum heat release rate increased with the increase of hydrogen fraction. The increase of hydrogen fraction in the blends contributed to the increase of NOx and the decrease of HC and CO. The brake specific fuel consumption decreased with the increase of hydrogen fraction. Using HCNG at relatively leaner fuel–air mixtures and retarded spark timing totally improved the engine emissions without incurring the performance penalty.  相似文献   

16.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

17.
Varying proportions of hydrogen and carbon monoxide (synthesis gas) have been investigated as a spark ignition (SI) engine fuel in this paper. It is important to understand how various synthesis gas compositions effect important SI combustion fundamentals, such as knock and burn duration, because in synthesis gas production applications, the compositions can vary significantly depending on the feedstock and production method.A single cylinder cooperative fuels research (CFR) engine was used to investigate the knock and combustion characteristics of three blends of synthesis gas (H2/CO ratio); 1) 100/0, 2) 75/25, and 3) 50/50, by volume. These blends were tested at three compression ratios (6:1, 8:1, and 10:1), and three equivalence ratios (0.6, 0.7, and 0.8).It was revealed that the knock limited compression ratio (KLCR) of a H2/CO mixture increases with increasing CO fraction, for a given spark timing. For a given equivalence ratio and spark timing, a 50%/50% H2/CO mixture produced a KLCR of 8:1 compared to a 100% H2 condition, which produced a KLCR of 6:1. The burn duration and ignition lag is also increased with increasing CO fraction. The results from this work are important for those considering using synthesis gas as a fuel in SI engines. It reveals that although CO is a slow burning fuel, higher CO fractions in synthesis gas can be beneficial, because of its increased resistance to knock, which gives it the potential of producing higher indicated efficiencies through the utilization of an engine with a higher compression ratio.  相似文献   

18.
Hydrogen gas concentrations and jet velocities were measured downstream by a high response speed flame ionization detector and PIV (Particle Image Velocimetry) in order to investigate the characteristics of dispersion and ignitability for 40–82 MPa high-pressurized hydrogen jet discharged from a nozzle with 0.2 mm diameter. The light emitted from both OH radical and water vapor species yielded from hydrogen combustion, ignited by an electric spark, were recorded by two high speed cameras. From the results, the empirical formula concerning the relationships for time-averaged concentrations, concentration fluctuations and ignition probability were obtained to suggest that they would be independent of hydrogen discharge pressure.  相似文献   

19.
In this study, the performance of different spark plugs was tested with varied spark gap sizes in a spark-ignited engine. Gasoline fuel was enriched with hydrogen and methanol to evaluate how much they affect the performance of the engine. The engine tests were performed with a four-stroke, single-cylinder, naturally aspirated, variable compression ratio (VCR) spark ignition engine. 1500 rpm engine speed and MBT for spark timing were applied throughout all experiments. Iridium, platinum and conventional (copper) spark plugs were tested using 3 different spark plug gaps (SPG) (0.6 mm, 0.8 mm, 1 mm). Depending on the experimental condition, hydrogen was added with 3 l/min of flow rate and methanol was used with 10% of volume fraction in the total liquid fuel. As for performance criteria, brake power (BP) and brake specific fuel consumption (BSFC) values were obtained from the test engine. According to the findings, platinum and iridium spark plugs had shown better performance than conventional spark plugs. The increment of SPG size improved the performance of the engine, too. On the other hand, despite methanol addition to gasoline fuel reduced performance, this loss could be compensated by hydrogen enrichment. Additionally, multiple linear regression (MLR) technique was applied through experimental results to obtain a linear relationship between explanatory variables (inputs) and response variables (outputs). An MLR model was set with four selected input variables (spark plug type, hydrogen flow rate, methanol ratio, and spark gap) to estimate BP and BSFC. Prediction equations showed that experimentally obtained results were in good agreement with MLR results.  相似文献   

20.
In this study, a survey of research papers on utilization of natural gas–hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO2, and CO emissions decrease with increasing H2, but NOx emissions generally increase. If a catalytic converter is used, NOx emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H2 amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号