首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The most important stimulus for the enhanced synthesis of erythropoietin (Epo) is a lowered O2 tension in the tissue. However, the mechanism by which an impaired O2 supply is transduced into appropriate Epo production is still not fully understood. Recently, studies in human hepatoma cells (line HepG2) indicate that reactive O2 species are involved in the signal transduction from the cellular O2 sensor to the Epo gene. To clarify the role of reactive O2 species in the regulation of Epo synthesis in the kidney, the principal Epo-producing organ in vivo, we investigated the influence of potent pro- and antioxidants on Epo production in isolated perfused rat kidneys. Under normoxic conditions, the iron chelator desferrioxamine and the antioxidant vitamin A increased renal Epo production, mimicking hypoxic induction. In contrast, supplementation of the perfusion medium of hypoxically perfused kidneys with the prooxidant compounds H2O2 or pyrogallol caused a significant reduction of Epo synthesis. The inhibition of Epo formation by reactive O2 species could be completely antagonized by desferrioxamine and the hydroxyl radical-(OH*)-scavenger tetramethylthiourea. Vitamin A also antagonized the H2O2-dependent inhibition of hypoxically induced Epo synthesis. Interestingly, the addition of the antioxidant vitamin A to hypoxically perfused kidneys also induced Epo production significantly. Our data strongly support the idea that reactive O2 species, especially H2O2, are part of the signaling chain of the cellular O2-sensing mechanism regulating the renal synthesis of Epo.  相似文献   

2.
Like neutrophils, Epstein-Barr virus (EBV)-immortalized B lymphocytes express all constituents of the NADPH oxidase complex necessary to generate superoxide anion O2-. The NADPH oxidase activity in EBV-B lymphocytes is only 5% of that measured in neutrophils upon PMA stimulation. Cytochrome b558 is the sole redox membrane component of NADPH oxidase; it is the protein core around which cytosolic factors assemble in order to mediate oxidase activity. In the present study, we have compared the structural and functional properties of cytochrome b558 from EBV-B lymphocytes and neutrophils. Cytochrome b558 from EBV-B lymphocyte plasma membrane, like that from neutrophils, is characterized by a heterodimeric structure with a highly glycosylated beta subunit, known as gp91-phox. While the amount of cytochrome b558 recovered after purification from EBV-B lymphocytes (approximately 0.24 nmol from 1010 cells) was low compared to that recovered from neutrophils (approximately 10 nmol), the biochemical properties of purified cytochrome b558 from both EBV-B lymphocytes and neutrophils were quite similar with respect to their differential spectra, redox potential, and FAD binding site. Once cytochrome b558 was extracted from the EBV-B lymphocyte membrane, it was able to mediate, in a reconstituted system of O2- production the same oxidase turnover as that found for cytochrome b558 extracted from neutrophils. A comparison between membrane bound and soluble cytochrome b558 suggested that the weak oxidase activity measured in intact EBV-B cells might be the result not only of the small amount of expressed cytochrome b558, but also of a defect of the activation process in lymphocyte membrane.  相似文献   

3.
4.
A housekeeping basolateral Cl- channel of rabbit gastric parietal cells, the single channel conductance of which is about 0.3 picosiemens, is opened by prostaglandin E2 and closed by intracellular application of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). In the present patch clamp study, we found a novel GTP gamma S-dependent regulatory mechanism of the Cl- channel. GTP gamma S significantly decreased the open probability of the single Cl- channel without altering unit conductance. An intracellular application of superoxide dismutase (SOD; 100 units/ml) inhibited the GTP gamma S (50 microM)-induced closure of the Cl- channel. SOD plus catalase (100 units/ml) also inhibited the GTP gamma S-induced effect, while catalase alone did not inhibit it. In the absence of GTP gamma S, an intracellular application of hydrogen peroxide (H2O2; 30 microM) did not affect the Cl- channel current. Desferrioxamine (50 microM) which inhibits hydroxyl radical (.OH) production was without effect on the GTP gamma S-induced closure. These results suggest that the GTP gamma S-induced closure of the Cl- channel was due to intracellular production of superoxide (O2.-), but not due to .OH or H2O2. Furthermore, an artificial production of O2.- inside the cell by lumazine (50-100 microM) plus xanthine oxidase (0.5-1 milliunit/ml) in the absence of GTP gamma S also closed the channel. The lumazine/xanthine oxidase-induced closure of the channel was inhibited by SOD, but not by catalase or desferrioxamine. We conclude from these results that GTP-binding protein-coupled production of O2.- leads to closure of the Cl- channel in rabbit gastric parietal cells.  相似文献   

5.
Decreased oxygen delivery to cells (hypoxia) is prevalent in a number of important diseases. Little is known about mechanisms of oxygen sensing at the cellular level or about whether functional correlates of oxygen sensing exist. In this study, we examined the impact of hypoxia on stimulated epithelial ion transport function. T84 cells, a model of intestinal epithelia, were grown on permeable supports, exposed to hypoxia (range 1-21% O2) for periods of time between 0 and 72 h and assessed for stimulated ion transport. Hypoxia evoked a specific decrease in cyclic nucleotide-stimulated (cAMP and cGMP) but not Ca++-stimulated ion transport. 86Rb (K+ tracer) uptake and 125I (Cl- tracer) efflux were reduced in hypoxic cells by >50% and >40%, respectively, fluid movement was reduced by hypoxia (>50% decrease) and reoxygenation resulted in partial recovery of the ion transport responses. Stimulated and basal levels of both cAMP and cGMP were decreased in response to hypoxia, although intracellular ATP levels were unaltered under similar conditions. Exogenous addition of cobalt, nickel or manganese, all of which compete for oxygen binding on heme-containing proteins, mimicked hypoxia. Because guanylate cyclase is a heme protein, we measured the influence of cobalt on activity of guanylate cyclase in purified plasma membrane preparations and found cobalt to inhibit stimulated cGMP levels in this cell-free system. Finally, pharmacological lowering of intracellular cGMP (using LY83583) resulted in decreased cAMP-stimulated Cl- secretion, and direct elevation of cGMP (using 8-bromo-cGMP or dibutyryl-cGMP) restored this hypoxia-induced activity. We conclude that a potential oxygen-sensing mechanism of epithelial cells involves the cooperation of heme-containing proteins such as guanylate cyclase and that biochemical cross-talk between cAMP- and cGMP-stimulated pathways may be important in such responses.  相似文献   

6.
1. The amount of cytochrome b5 was not changed significantly by a single injection of cobalt (60 mg/kg body weight) or by daily injection of cobalt (30 mg/kg body weight) for 4 days or 8 days. On the other hand, the amount of cytochrome P-450 was depressed strongly by both cobalt treatments. 2. The incorporations of [3H]leucine as well as 5-amino[3H]levulinate into cytochrome b5 in cobalt-treated animals were almost the same as those in the controls 5 h after injections of the radioisotopes, whereas the radioactivity of heme labelled with 5-amino[3H]levulinate in microsomal residues after trypsin digestion, which would consist mainly of cytochrome P-450, was higher in the controls than in cobalt-treated animals after 5 h.  相似文献   

7.
BACKGROUND: Lactate increases lucigenin chemiluminescence (CL)-detectable superoxide anion (O2.-) generation in bovine vascular smooth muscle and endothelium, and a microsomal flavoprotein-containing NADH oxidase whose activity is regulated by PO2 and cytosolic NAD(H) redox appears to be the detected source of O2.- production. Little is known about the importance of this O2.(-)-producing system in cardiac myocytes. METHODS AND RESULTS: In isolated bovine cardiac myocytes, lactate (10 mmol/L) increased lucigenin-detectable O2.- levels to approximately 1.8 times baseline, whereas pyruvate (10 mmol/L) and mitochondrial probes did not increase the detection of O2.-. A nonmitochondrial NADH oxidase activity, found in microsomes containing a cytochrome b558, was a major source of O2.- production in the homogenate of myocytes, because NADH (0.1 mmol/L) increased basal lucigenin CL >100-fold. NADPH oxidases, mitochondria, and xanthine oxidase were minor sources of detectable O2.- production. However, mitochondria released H2O2 in the presence of 5 mmol/L succinate and 30 micromol/L antimycin, based on its detection as catalase-inhibitable luminol (+horseradish peroxidase)-elicited CL. Diphenyliodonium (DPI), an inhibitor of flavoprotein-containing oxidases, significantly attenuated basal, lactate, and NADH-elicited lucigenin CL. Hypoxia eliminated myocyte lucigenin CL, and posthypoxic reoxygenation caused an 8.6-fold increase in the detection of O2.- that was potentiated by lactate and inhibited by DPI. CONCLUSIONS: NADH oxidase activity linked to cytosolic NAD(H) redox appears to be a key source of O2.- production in cardiac myocytes that could contribute to oxidant signaling mechanisms and injury upon exposure to changes in PO2 and metabolites produced under hypoxia, such as lactate. These processes could contribute to the previously observed potentiation of injury caused by lactate in cardiac ischemia/reperfusion.  相似文献   

8.
9.
Cardiomyocytes suppress contraction and O2 consumption during hypoxia. Cytochrome oxidase undergoes a decrease in Vmax during hypoxia, which could alter mitochondrial redox and increase generation of reactive oxygen species (ROS). We therefore tested whether ROS generated by mitochondria act as second messengers in the signaling pathway linking the detection of O2 with the functional response. Contracting cardiomyocytes were superfused under controlled O2 conditions while fluorescence imaging of 2, 7-dichlorofluorescein (DCF) was used to assess ROS generation. Compared with normoxia (PO2 approximately 107 torr, 15% O2), graded increases in DCF fluorescence were seen during hypoxia, with responses at PO2 = 7 torr > 20 torr > 35 torr. The antioxidants 2-mercaptopropionyl glycine and 1,10-phenanthroline attenuated these increases and abolished the inhibition of contraction. Superfusion of normoxic cells with H2O2 (25 microM) for >60 min mimicked the effects of hypoxia by eliciting decreases in contraction that were reversible after washout of H2O2. To test the role of cytochrome oxidase, sodium azide (0.75-2 microM) was added during normoxia to reduce the Vmax of the enzyme. Azide produced graded increases in ROS signaling, accompanied by graded decreases in contraction that were reversible. These results demonstrate that mitochondria respond to graded hypoxia by increasing the generation of ROS and suggest that cytochrome oxidase may contribute to this O2 sensing.  相似文献   

10.
We have investigated an interorganelle communication pathway between the nucleus and mitochondria. We loaded a stress specific to mitochondria of human fibroblast cells by antimycin A (AA), an inhibitor of the mitochondrial cytochrome bc1 complex. AA inhibited cellular respiration in a dose-dependent manner. When the respiratory capacity was reduced to 50-70% of the original one, mRNA levels of cytochrome c1 as well as cytochrome b increased at 24 h after AA treatment, resulting in maintenance of the cell viability. In contrast, the cells retaining less than 40% of the original capacity showed no increase in either mRNA level and were targeted for death. Intracellular H2O2 level monitored by the fluorescence of dichlorofluorescein increased within 3 h in both the cases, although this increase was higher in the cells where the mRNA levels increased. An antioxidant N-acetylcysteine repressed the increases of not only H2O2 but also cytochrome c1 mRNA levels. These results suggest that the cells can respond to a limited impairment of electron transfer by promoting expression of nuclear and mitochondrial genes, probably through an H2O2-dependent signaling pathway.  相似文献   

11.
12.
Some investigators have reported previously that phorbol esters inhibit in vitro erythropoietin production stimulated by hypoxia; whereas others have reported that phorbol esters enhanced Epo production during exposure to hypoxia. We have demonstrated in the present experiments that hypoxia significantly increased diacylglycerol levels in cultured human hepatocellular carcinoma (Hep3B) cells. 1-oleoyl-2-acetyl-ras-glycerol (OAG) and N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide (SC-9), two well-known protein kinase C activators, significantly increased medium levels of erythropoietin as well as erythropoietin messenger RNA levels in normoxic Hep3B cells. A potent protein kinase C inhibitor, chelerythrine chloride, significantly decreased hypoxia-induced increases in medium levels of erythropoietin as well as erythropoietin messenger RNA levels in Hep3B cells. A cis-unsaturated free fatty acid, oleic acid, significantly enhanced OAG-induced medium levels of erythropoietin in normoxic Hep3B cells, whereas a phospholipase A2 inhibitor, mepacrine, significantly decreased hypoxia-induced erythropoietin production in Hep3B cells. These results provide strong support for a positive role for protein kinase C in the hypoxic regulation of erythropoietin production.  相似文献   

13.
PURPOSE: To investigate whether reoxygenation after extended hypoxia causes cellular damage in cultured corneal epithelial cells and to demonstrate the protective effects of lactoferrin. METHODS: Immortalized human corneal epithelial cells (T-HCECs) were cultured to confluence in 96-well culture plates, subjected to stringent hypoxia (1% O2, 5% CO2, 94% N2 at 37 degrees C) for 24 hours, and returned to normoxic conditions (5% CO2, 95% air at 37 degrees C). Cell viability was observed by 1 microM propidium iodide staining 0, 2, 4, and 6 hours after reoxygenation. Inhibition studies were performed after 2 hours' reoxygenation, using 2 mM iron chelator desferrioxamine and 0.2 mg/ml lactoferrin. Confocal immunocytochemistry for human lactoferrin and western blot analysis for lactoferrin-induced ferritin were performed in cultured T-HCECs to demonstrate the internalization of lactoferrin after application. RESULTS: After 2 hours, reoxygenation of T-HCECs after hypoxia produced an increase in cell death that was significantly greater than that observed in normoxic control cells or in cells subjected to hypoxia for the same time span without reoxygenation. The addition of desferrioxamine and lactoferrin at the time of reoxygenation significantly attenuated cellular damage. Confocal immunocytochemistry revealed that lactoferrin is taken into the cytoplasm of T-HCECs as early as 30 minutes after application. This was also demonstrated in western blot analysis by the upregulation of intracellular ferritin at 18 hours by the addition of iron-bound lactoferrin but not by iron-free lactoferrin. CONCLUSION: Reoxygenation is responsible for increased cellular damage after extensive hypoxia, which is attenuated by chelators of free iron in the cytosol, including the major tear protein lactoferrin.  相似文献   

14.
The effects of nitric oxide (NO) on superoxide (O-2) generation of the NADPH oxidase in pig neutrophils were studied. NO dose-dependently suppressed O-2 generation of both neutrophil NADPH oxidase and reconstituted NADPH oxidase. Effects of NO on NADPH-binding site and the redox centers including FAD and low spin heme in cytochrome b558 and the electron transfer rates from NADPH to heme via FAD were examined under anaerobic conditions. Both reaction rates and the Km value for NADPH were unchanged by NO. Visible and EPR spectra of cytochrome b558 showed that the structure of heme was unchanged by NO, indicating that NO does not affect the redox centers of the oxidase. In reconstituted NADPH oxidase system, NO did not inhibit O-2 generation of the oxidase when added after activation. The addition of NO to the membrane component or the cytosol component inhibited the activity by 24.0 +/- 5.3 or 37.4 +/- 7.1%, respectively. The addition of NO during the activation process or to the cytosol component simultaneously with myristate inhibited the activity by 74.0 +/- 5.2 or 70.0 +/- 8.3%, respectively, suggesting that cytosol protein(s) treated with myristate becomes susceptible to NO. Peroxynitrite did not interfere with O-2 generation.  相似文献   

15.
16.
The catecholaminergic neurotoxin 6-hydroxydopamine causes parkinsonian symptoms in animals and it has been proposed that reactive oxygen species and oxidative stress, enhanced by iron, may play a key role in its toxicity. The present results demonstrate that 6-hydroxydopamine reversibly inhibits complex I (NADH dehydrogenase) of brain mitochondrial respiratory chain in isolated mitochondria. 6-Hydroxydopamine itself, rather than its oxidative products, was responsible for the inhibition. Iron (III) did not enhance inhibition but decreased it by stimulating the nonenzyme oxidation of 6-hydroxydopamine. Inhibition was potentiated to some extent by calcium ion. Desferrioxamine protected complex I activity against the inhibition, but it was not due to its chelator or antioxidative properties. Desferrioxamine was also shown to activate NADH dehydrogenase in the absence of 6-hydroxydopamine. Activation of mitochondrial respiration by desferrioxamine may contribute to the enhanced neuron survival in the presence of desferrioxamine in some neurodegenerative conditions.  相似文献   

17.
Hydrogen peroxide (H2O2) is considered to be a mediator of apoptotic cell death but the mechanism by which it induces apoptosis is unclear. Here, we show that cells undergoing apoptosis from exposure to H2O2 display a significant decrease in intracellular concentration of superoxide (O2-) which is associated with a reduction of the intracellular milieu, as measured by an increase in the GSH/GSSG ratio and a decrease in intracellular pH. The notion that a decrease in intracellular O2- concentration triggers apoptosis is supported by the observation that H2O2-mediated apoptosis could be retarded in cells in which the intracellular O2- concentration is maintained at or above the cellular baseline level by inhibition of the major O2- scavenger superoxide dismutase (Cu/Zn SOD). Taken together, our observations indicate that a decrease in the intracellular O2- concentration, reduction and acidification of the intracellular milieu constitute a signal for H2O2-mediated apoptosis, thereby inducing a reductive as opposed to an oxidative stress.  相似文献   

18.
We find spontaneous light emission from isolated Krebs-Henseleit-perfused rabbit lungs when the light-emitting super-oxide trap lucigenin is added to the perfusate. Lucigenin light emission appears to be specific for superoxide anion, because light emission from the lung caused by a superoxide-generating system is abolished by superoxide dismutase but not by catalase or dimethylthiourea. We also studied the relative sensitivity of lucigenin photoemission to superoxide and to H2O2 in vitro. Lucigenin photoemission is three to four orders of magnitude more sensitive to superoxide than to H2O2 and probably cannot detect H2O2 in concentrations thought to occur in biological systems. Basal lucigenin photoemission by the lung is oxygen dependent, because severe hypoxia completely inhibits light emission. Superoxide dismutase reduces basal photoemission by 50%, and administration of the low-molecular-weight superoxide scavenger 4,5-dihydroxy-1,3-benzene disulfonic acid (tiron) inhibits basal photoemission by approximately 90%. These observations suggest that endogenous superoxide production is primarily intracellular and that approximately half of the superoxide reaches the extracellular space. Superoxide transport may involve anion channels, because the anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid increases photoemission, suggesting intracellular accumulation of superoxide. A cytochrome P-450 inhibitor, SKF 525A, or the mitochondrial transport inhibitor antimycin decreased basal photoemission by approximately 50%, suggesting that cytochrome P-450-mediated reactions and perhaps mitochondrial function contribute to basal superoxide production in the isolated perfused lung. Endogenous superoxide production may be important in regulation of pulmonary vascular reactivity and may contribute to the pathogenesis of lung reperfusion injury.  相似文献   

19.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. To identify alternative oxidases, we isolated several mutants from B. stearothermophilus defective in the caa3-type oxidase activity [Sakamoto, J. et al (1996) FEMS Microbiol. Lett. 143, 151-158]. A novel oxidase was isolated from membrane preparations of one of the mutants, K17. The oxidase was composed of two subunits with molecular masses of 56 and 19 kDa, and contained protoheme IX, heme O, heme A, and Cu in a ratio of 1:0.7:0.2:3. CO difference spectra indicate that the high-spin heme is mainly heme O. These results suggest that the enzyme belongs to the heme-copper oxidase family and is a cytochrome b(o/a)3-type oxidase, whose high-spin heme is mainly heme O and partly heme A. The enzyme oxidized cytochrome c-551, which is a membrane-bound lipoprotein of thermophilic Bacillus. The turnover rate of the activity (Vmax = 190 s[-1]) and its affinity for cytochrome c-551 (Km = 0.15 microM) were much higher than those for yeast and equine heart cytochromes c. The oxidase activity was enhanced by the presence of salts and inhibited by sodium cyanide with a Ki value of 19 microM. The enzyme kinetics suggests that cytochrome c-551 is the natural substrate to this oxidase. Furthermore, the oxidase had similarity to cytochrome ba3-type oxidase from Thermus thermophilus in the subunit composition, partial amino acid sequence, and prosthetic groups, and therefore is suggested to belong to a unique subgroup of the heme-copper oxidase family together with the Thermus enzyme and archaeal oxidases such as Sulfolobus SoxABCD.  相似文献   

20.
Cytochrome bd oxidase is a bacterial terminal oxidase that contains three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be a binuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinol to the oxidase. Information on the nature of the axial ligands of the three heme centers has come from site-directed mutagenesis and spectroscopy, which have implicated a His/Met coordination for b558 (Spinner, F., Cheesman, M. R., Thomson, A. J., Kaysser, T., Gennis, R. B., Peng, Q., & Peterson, J. (1995) Biochem. J. 308, 641-644; Kaysser, T. M., Ghaim, J. B., Georgiou, C., & Gennis, R. B. (1995) Biochemistry 34, 13491-13501), but the ligands to b595 and d are not known with certainty. In this work, the three heme chromophores of the fully reduced cytochrome bd oxidase are studied individually by selective enhancement of their resonance Raman (rR) spectra at particular excitation wavelengths. The rR spectrum obtained with 413.1-nm excitation is dominated by the bands of the 5cHS b595(2+) cofactor. Excitation close to 560 nm yields a rR spectrum dominated by the 6cLS b558(2+) heme. Wavelengths between these values enhance contributions from both b595(2+) and b558(2+) chromophores. The rR bands of the ferrous chlorin become the major features with red laser excitation (595-650 nm). The rR data indicate that d2+ is a 5cHS system whose axial ligand is either a weakly coordinating protein donor or a water molecule. In the low-frequency region of the 441.6-nm spectrum, we assign a rR band at 225 cm-1 to the (b595)Fe(II)-N(His) stretching vibration, based on its 1.2-cm(-1) upshift in the 54Fe-labeled enzyme. This observation provides the first physical evidence that the proximal ligand of b595 is a histidine. Site-directed mutagenesis had suggested that His 19 is associated with either b595 or d (Fang, H., Lin, R. -J., & Gennis, R. B. (1989) J. Biol. Chem. 264, 8026-8032). On the basis of the present study, we propose that the proximal ligand of b595 is His 19. We have also studied the reaction of cyanide with the fully reduced cytochrome bd oxidase. In approximately 700-fold excess cyanide (approximately 35 mM), the 629-nm UV/vis band of d2+ is blue-shifted to 625 nm and diminished in intensity. However, the rR spectra at each of three different gamma(0) (413.1, 514.5, and 647.1 nm) are identical with or without cyanide, thus indicating that both b595 and d remain as 5cHS species in the presence of CN-. This observation leads to the proposal that a native ligand of ferrous chlorin d is replaced by CN- to form the 5cHS d2+ cyano adduct. These findings corroborate our companion study of the "as-isolated" enzyme in which we proposed a 5cHS d3+ cyano adduct (Sun, J., Osborne, J. P., Kahlow, M. A., Kaysser, T. M., Hill, J. J., Gennis, R. B., & Loehr, T. M. (1995) Biochemistry 34, 12144-12151). To further characterize the unusual and unexpected nature of these proposed high-spin cyanide adducts, we have obtained EPR spectral evidence that binding of cyanide to fully oxidized cytochrome bd oxidase perturbs a spin-state equilibrium in the chlorin d3+ to yield entirely the high-spin form of the cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号