首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

2.
We have achieved a 9- $muhbox{m}$-thick AlGaN/GaN high-electron mobility transistor (HEMT) epilayer on silicon using thick buffer layers with reduced dislocation density $(D_{D})$. The crack-free 9- $muhbox{m}$-thick epilayer included 2- $muhbox{m}$ i-GaN and 7- $ muhbox{m}$ buffer. The HEMTs fabricated on these devices showed a maximum drain–current density of 625 mA/mm, transconductance of 190 mS/mm, and a high three-terminal OFF breakdown of 403 V for device dimensions of $L_{g}/W_{g}/L_{rm gd} = hbox{1.5/15/3} muhbox{m}$ . Without using a gate field plate, this is the highest $BV$ reported on an AlGaN/GaN HEMT on silicon for a short $L_{rm gd}$ of 3 $muhbox{m}$. A very high $BV$ of 1813 V across 10- $mu hbox{m}$ ohmic gap was achieved for i-GaN grown on thick buffers. As the thickness of buffer layers increased, the decreased $D_{D}$ of GaN and increased resistance between surface electrode and substrate yielded a high breakdown.   相似文献   

3.
Ultrathin-barrier normally off AlN/GaN/AlGaN double-heterostructure field-effect transistors using an in situ SiN cap layer have been fabricated on 100-mm Si substrates for the first time. The high 2DEG density in combination with an extremely thin barrier layer leads to enhancement-mode devices with state-of-the-art combination of specific on-resistance that is as low as 1.25 $hbox{m}Omegacdothbox{cm}^{2}$ and breakdown voltage of 580 V at ${V}_{rm GS} = hbox{0} hbox{V}$ . Despite the 2-$muhbox{m}$ gate length used, the transconductance peaks above 300 mS/mm. Furthermore, pulsed measurements show that the devices are dispersion free up to high drain voltage ${V}_{rm DS} = hbox{50} hbox{V}$. More than 200 devices have been characterized in order to confirm the reproducibility of the results.   相似文献   

4.
GaN/AlN/AlGaN/GaN nanowire metal–insulator–semiconductor field-effect transistors (MISFETs) have been fabricated for the first time with submicrometer gate lengths. Their microwave performances were investigated. An intrinsic current-gain cutoff frequency $(F_{T})$ of 5 GHz as well as an intrinsic maximum available gain $(F_{rm MAX})$ cutoff frequency of 12 GHz have been obtained for the first time and associated with a gate length of 0.5 $muhbox{m}$. These results show the great potentiality of GaN-based nanowire FETs for microwave applications.   相似文献   

5.
Multi-Channel Field-Effect Transistor (MCFET) structures with ultralow $I_{ rm OFF}$ (16 $hbox{pA}/muhbox{m}$) and high $I_{rm ON}$ (N: 2.27 $ hbox{mA}/muhbox{m}$ and P: 1.32 $hbox{mA}/muhbox{m}$ ) currents are obtained on silicon on insulator (SOI) with a high-$ kappa$/metal gate stack, satisfying both low-standby-power and high-performance requirements. The experimental current gain of the MCFET structure is compared with that of an optimized planar FD-SOI reference with the same high-$kappa$/metal gate stack and is quantitatively explained by an analytical model. Transport properties are investigated, and the specific MCFET electrostatic properties are evidenced, in particular a higher $V_{rm Dsat}$ for MCFETs compared with the planar reference. Finally, through 3-D numerical simulations correlated with specific characterizations, the influence of the channel width on the electrical performance is analyzed. For narrow devices, the parasitic bottom channel increases the total drain current of the MCFET structure without degrading the electrostatic integrity.   相似文献   

6.
Effects of silicon nitride (SiN) surface passivation by plasma enhanced chemical vapor deposition (PECVD) on microwave noise characteristics of AlGaN/GaN HEMTs on high-resistivity silicon (HR-Si) substrate have been investigated. About 25% improvement in the minimum noise figure $(NF_{min})$ (0.52 dB, from 2.03 dB to 1.51 dB) and 10% in the associate gain $(G_{rm a})$ (1.0 dB, from 10.3 dB to 11.3 dB) were observed after passivation. The equivalent circuit parameters and noise source parameters (including channel noise coefficient $(P)$, gate noise coefficient $(R)$, and their correlation coefficient $(C)$ ) were extracted. $P$ , $R$ and $C$ all increased after passivation and the increase of C contributes to the decrease of the noise figure. It was found that the improved microwave small signal and noise performance is mainly due to the increase of the intrinsic transconductance $(g_{{rm m}0})$ and the decrease of the extrinsic source resistance $(R_{rm s})$.   相似文献   

7.
A V-band frequency doubler monolithic microwave integrated circuit with a current re-use buffer amplifier is presented. The circuit is designed and fabricated using 0.13 $mu$m CMOS technology. The buffer amplifier uses a current re-use topology, which adopts series connection of two common source amplifiers for low dc power consumption. The suppression of the fundamental frequency is obtained by shunting the input frequency at the output node of the doubler and the drain nodes of two common-source stages of the buffer amplifier. The fabricated frequency doubler exhibits an output power of ${-}$4.45 dBm and a conversion gain of ${-}$ 0.45 dB at input frequency of 27.1 GHz with an input power of ${-}$4 dBm. The suppression of the fundamental signal is 49.2 dB. The total dc power dissipation is 9 mW while the buffer amplifier consumes 5 mW. The integrated circuit size including pads is 1.24 mm$, times ,$0.75 mm. To our knowledge, this is the highest suppression with low-power dissipation among V-band frequency doublers.   相似文献   

8.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

9.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

10.
We fabricated high-performance thin-film transistors (TFTs) with an amorphous-Al–Sn–Zn–In–O (a-AT-ZIO) channel deposited by cosputtering using a dual Al–Zn–O and In–Sn–O target. The fabricated AT-ZIO TFTs, which feature a bottom-gate and bottom-contact configuration, exhibited a high field-effect mobility of 31.9 $ hbox{cm}^{2}/hbox{V}cdothbox{s}$, an excellent subthreshold gate swing of 0.07 V/decade, and a high $I_{{rm on}/{rm off}}$ ratio of $≫hbox{10}^{9}$, even below the process temperature of 250 $^{circ}hbox{C}$. In addition, we demonstrated that the temperature and bias-induced stability of the bottom-gate TFT structure can significantly be improved by adopting a suitable passivation layer of atomic-layer-deposition-derived $hbox{Al}_{2} hbox{O}_{3}$ thin film.   相似文献   

11.
A low-power fully integrated low-noise amplifier (LNA) with an on-chip electrostatic-static discharge (ESD) protection circuit for ultra-wide band (UWB) applications is presented. With the use of a common-gate scheme with a ${rm g}_{rm m}$ -boosted technique, a simple input matching network, low noise figure (NF), and low power consumption can be achieved. Through the combination of an input matching network, an ESD clamp circuit has been designed for the proposed LNA circuit to enhance system robustness. The measured results show that the fabricated LNA can be operated over the full UWB bandwidth of 3.0 to 10.35 GHz. The input return loss $({rm S}_{11})$ and output return loss $({rm S}_{22})$ are less than ${-}8.3$ dB and ${-}9$ dB, respectively. The measured power gain $({rm S}_{21})$ is $11 pm 1.5$ dB, and the measured minimum NF is 3.3 dB at 4 GHz. The dc power dissipation is 7.2 mW from a 1.2 V supply. The chip area, including testing pads, is 1.05 mm$,times,$ 0.73 mm.   相似文献   

12.
In this letter, we demonstrated dopant-segregated Schottky (DSS) p-MOSFET with gate-all-around silicon-nanowire (SiNW) channel of 10 nm in diameter. The DSS transistor shows improved performance as compared to a reference Schottky barrier (SB) transistor without dopant segregation. The DSS transistor shows $I_{rm ON}$ of 319 $mu hbox{A}/muhbox{m}$ at a low gate overdrive of $-$ 0.6 V, high $I_{rm ON}/I_{rm OFF}$ ratio $(sim!hbox{10}^{5})$, and short-channel performance with subthreshold slope $sim$90 mV/dec down to 100-nm gate length with relatively thick (6 nm) deposited gate oxide. The DSS transistor also shows significant reduction ( $sim!hbox{40}times$ lower) in the series resistance as compared to the SB transistor. The origin of the improved performance of the DSS is the thin dopant layer segregated at the nickel monosilicide/SiNW point contact which results in the enhanced hole injection at the source side and the suppressed electron injection at the drain side.   相似文献   

13.
This letter reports on the fabrication and hole Schottky barrier $(Phi_{ rm B}^{rm p})$ modulation of a novel nickel (Ni)–dysprosium (Dy)-alloy germanosilicide (NiDySiGe) on silicon–germanium (SiGe). Aluminum (Al) implant is utilized to lower the $Phi_{rm B}^{rm p}$ of NiDySiGe from $sim$0.5 to $sim$ 0.12 eV, with a correspondingly increasing Al dose in the range of $ hbox{0}$$hbox{2}timeshbox{10}^{15} hbox{atoms}/ hbox{cm}^{2}$. When integrated as the contact silicide in p-FinFETs (with SiGe source/drain), NiDySiGe with an Al implant dose of $hbox{2}timeshbox{10}^{14} hbox{atoms}/ hbox{cm}^{2}$ leads to 32% enhancement in $I_{rm DSAT}$ over p-FinFETs with conventional NiSiGe contacts. Ni–Dy-alloy silicide is a promising single silicide solution for series-resistance reduction in CMOS FinFETs.   相似文献   

14.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

15.
In this letter, we investigate the effects of oxide traps induced by various silicon-on-insulator (SOI) thicknesses $({T}_{rm SOI})$ on the performance and reliability of a strained SOI MOSFET with SiN-capped contact etch stop layer (CESL). Compared to the thicker ${T}_{rm SOI}$ device, the thinner ${T}_{rm SOI}$ device with high-strain CESL possesses a higher interface trap $({N}_{rm it})$ density, leading to degradation in the device performance. On the other hand, however, the thicker ${T}_{rm SOI}$ device reveals inferior gate oxide reliability. From low-frequency noise analysis, we found that thicker ${T}_{rm SOI}$ has a higher bulk oxide trap $({N}_{rm BOT})$ density, which is induced by larger strain in the gate oxide film and is mainly responsible for the inferior TDDB reliability. Presumably, the gate oxide film is bended up and down for the p- and nMOSFETs, respectively, by the net stress in thicker ${T}_{rm SOI}$ devices in this strain technology.   相似文献   

16.
Performance degradation of n-MOSFETs with plasma-induced recess structure was investigated. The depth of Si recess $(d_{R})$ was estimated from the experiments by using Ar gas plasmas. We propose an analytical model by assuming that the damage layer was formed during an offset spacer etch. A linear relationship between threshold voltage shift $(Delta V_{rm th})$ and $d_{R}$ was found. Device simulations were also performed for n-MOSFETs with various $(d_{R})$. Both $vertDelta V_{rm th}vert$ and off-state leakage current increased with an increase in $d_{R}$ . The increase in $vertDelta V_{rm th}vert$ becomes larger for smaller gate length. The results from device simulations are consistent with the analytical model. These findings imply that the Si recess structure induced by plasma damage enhances $V_{rm th}$-variability in future devices.   相似文献   

17.
An anomalous kink effect has been observed in the room-temperature drain current $I_{D}$ versus drain voltage $V_{rm DS}$ characteristics of GaN high electron mobility transistors. The kink is originated by a buildup (at low $V_{rm DS}$) and subsequent release (at high $V_{rm DS}$) of negative charge, resulting in a shift of pinch-off voltage $V_{P}$ toward more negative voltages and in a sudden increase in $I_{D}$. The kink is characterized by extremely long negative charge buildup times and by a nonmonotonic behavior as a function of photon energy under illumination. The presence of traps in the GaN buffer may explain both spectrally resolved photostimulation data and the slow negative charge buildup.   相似文献   

18.
We have fabricated the transparent bottom gate thin-film transistors (TFTs) using Al and Sn-doped zinc indium oxide (AT-ZIO) as an active layer. The AT-ZIO active layer was deposited by RF magnetron sputtering at room temperature, and the AT-ZIO TFT showed a field effect mobility of 15.6 $ hbox{cm}^{2}/hbox{Vs}$ even before annealing. The mobility increased with increasing the $hbox{In}_{2}hbox{O}_{3}$ content and postannealing temperature up to 250 $^{circ}hbox{C}$. The AT-ZIO TFT exhibited a field effect mobility of 30.2 $hbox{cm}^{2}/hbox{Vs}$, a subthreshold swing of 0.17 V/dec, and an on/off current ratio of more than $10^{9}$ .   相似文献   

19.
To enhance the device sensitivity and detection limit, a gate bias is applied to the catalytic metal of AlGaN/GaN-heterojunction field-effect-transistor (HFET) hydrogen sensors to control the carrier concentration in the channel at operation. The sensors exhibit a good sensitivity at temperatures up to 800 $^{circ}hbox{C}$ and a detection limit of 10-ppb $ hbox{H}_{2}$ in $hbox{N}_{2}$. The dependence of the device sensitivity on gate and drain biases has been investigated. The sensitivity peaks at the gate bias of threshold voltage and the drain bias of knee voltage in sensing gas. At high temperatures and $hbox{H}_{2}$ concentrations, specifically from 300 $^{circ}hbox{C}$ and 1000-ppm $hbox{H}_{2}/hbox{N}_{2}$, respectively, the sensitivity of HFETs at $V_{rm gs} = -hbox{3.5} hbox{V}$ and $V_{rm ds} = hbox{1} hbox{V}$ is more than three orders higher than their sensitivity at $V_{rm gs} = hbox{0} hbox{V}$ and the sensitivity of Schottky diodes.   相似文献   

20.
We propose an equivalent circuit model for the post-breakdown (BD) current–voltage ( $I$$V$) characteristics in $hbox{HfO}_{2}/hbox{TaN/TiN}$ gate stacks in n-MOSFETs. The model consists of two opposite-biased diodes with series resistances and a shunt leakage path. The circuit admits analytical solution using the Lambert $W$-function and is tested for both negative and positive gate biases in the voltage range of $-$1.5 to $+$1.5 V. We also show the versatility of the proposed approach to deal with the post-BD $I$$V$ when source and drain contacts are grounded or floating and analyze the obtained results in terms of the charge available for conduction.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号