首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Acta Materialia》1999,47(8):2567-2579
The synthesis, microstructural characterization and microhardness of nanocrystalline B2-phase NiAl intermetallic are discussed in this paper. Nanophase NiAl powders were prepared by mechanical alloying of elemental Ni and Al powders under an argon atmosphere for different times (0–48 h). The alloyed nanocrystalline powders were then consolidated by shock compaction at a peak pressure of 4–6 GPa, to 83% dense compacts. Characterization by transmission electron microscopy (TEM) revealed that the microstructure of the shock-consolidated sample was retained at the nanoscale. The average crystallite size measurements revealed that mechanically alloyed NiAl grain size decreased from 48±27 to 9±3 nm with increasing mechanical alloying time from 8 to 48 h. The long-range-order parameters of powders mechanically alloyed for different times were determined, and were observed to vary between 0.82 for 5 h and 0.63 for 48 h of milling time. Following shock compaction, the long-range-order parameter was determined to be 0.76, 0.69 and 0.66, respectively, for the 16, 24 and 48 h alloyed specimens. Both the mechanically alloyed nanocrystalline NiAl powder and the shock-consolidated bulk specimen showed evidence of grain boundary dislocations, subgrains, and distorted regions. A large number of grain boundaries and defects were observed via high resolution TEM (HRTEM). Shear bands were also observed in the mechanically alloyed NiAl intermetallic powders and in the shock-consolidated compacts. Microhardness measurements of shock-consolidated material showed increasing microhardness with increasing crystallite size refinement, following Hall–Petch behavior.  相似文献   

2.
纳米金属间化合物NiAl的机械合金化合成及性能   总被引:12,自引:0,他引:12  
郭建亭  周兰章 《金属学报》1999,35(8):846-850
利用机械合金化和高温热压工艺制备NiAl纳米晶体材料,并研究了材料的微观组织和力学性能。结果表明,NiAl的反应生成归结于机械碰撞诱发的爆炸反应机制,采用高温热压工艺可制备接近完全致密的纳米晶NiAl块体材料。NiAl纳米晶体材料的室温强度和塑性都高于铸态NiAl,纳米晶NiAl的高温强度依赖于应变速率,变形受扩散机制控制。  相似文献   

3.
In this study, nanocrystalline NiAl intermetallic compound was obtained by mechanical alloying and PAS (plasma activated sintering method). Nanocrystalline NiAl powder was fabricated after 30 hr of milling with 2 wt.% stearic acid added as a PCA (process control agent) to the Ni-50at%Al composition. The grain size of the nanocrystalline NiAl powder was about 10 nm. Nanocrystalline NiAl powder was consolidated at 1000°C, 1100°C, 1200°C and 1300°C for 2 min with 30 MPa compressive force. The surface morphology of the NiAl consolidated at 1300°C was very regular and dense, above 96% of theoretical density (5.9 g/cm3). Al4C3 was observed in the NiAl consolidated at 1300°C by TEM analysis. It is thought that the carbons came from the stearic acid during the MA process and the graphite mold during the PAS process. The grain size of the NiAl consolidated at 1300°C did not increase but the grain shape became flat due to compressive force.  相似文献   

4.
Nanocrystalline NiAl intermetallic powders were synthesized by mechanical alloying (MA) in a planetary ball mill. Microstructural characterization was accomplished using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The nanocrystalline NiAl powders were formed by a gradual exothermic reaction mechanism during MA. Prolonged milling resulted in partial martensitic transformation of B2-NiAl to tetragonal L10-NiAl structure. It is believed that the martensitic transformation is induced by mechanical stress during MA.  相似文献   

5.
The nanocrystalline (Fe,Ti)3Al intermetallic compound was synthesized by mechanical alloying (MA) of elemental powder with composition Fe50Al25Ti25. The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry and microhardness measurements. Morphology and cross-sectional microstructure of powder particles were characterized by scanning electron microscopy. It was found that a Fe/Al/Ti layered structure was formed at the early stages of milling followed by the formation of Fe(Ti,Al) solid solution. This structure transformed to (Fe,Ti)3Al intermetallic compound at longer milling times. Upon heat treatment of (Fe,Ti)3Al phase the degree of DO3 ordering was increased. The (Fe,Ti)3Al compound exhibited high microhardness value of about 1050 Hv.  相似文献   

6.
采用机械合金化方法,以Ni、Al元素粉末为原料,对四种成分的NixAl100-x(x=25,30,40,50)进行不同球磨时间和球磨转速的机械合金化合成;并对Ni30Al70的合成产物进行热处理.研究了过饱和固溶NiAl的机械合金化合成机理.研究表明:NixAl100-x四种成分的元素粉末通过机械合金化方法均制备出纳米晶NiAl金属间化合物粉末;非化学计量配比成分的Ni-Al粉末通过机械合金化合成NiAl过饱和同溶合金,其机械合金化合成机理为含有以原子扩散为基础的强制同溶的燃烧合成反应.  相似文献   

7.
热压NiAl纳米晶块体材料的HREM观察及EDS分析   总被引:3,自引:0,他引:3  
利用高分辨电镜(HREM)及场发射电镜纳米尺度成分分析技术(EDS分析)研究了机械合金化和真空热压技术制备的纳米NiAl块体材料的微观结构。HREM及EDS分析结果表明在球磨过程中形成第二相粒子Al2O3分布于NiAl晶粒内部或边界上,分布于晶粒边界上的Al2O3对晶界起钉扎作用,有效地抑制晶粒长大;此外,观察到纳米晶粒间存在无序区,这些无序区也是抑制晶粒长大的一个因素。  相似文献   

8.
Nanocrystalline NiAl intermetallic powder was prepared by mechanical alloying (MA) of Ni50Al50 powder mixture and then deposited on low carbon steel substrates by high velocity oxy fuel (HVOF) thermal spray technique using two sets of spraying parameters. X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), differential scanning calorimetry (DSC), and hardness test were used to characterize the prepared powders and coatings. The MA of Ni50Al50 powder mixture led to the formation of NiAl intermetallic compound. The resulting powder particles were three dimensional in nature with irregular morphology and a crystallite size of ~10 nm. This powder was thermally sprayed by HVOF technique to produce coating. The deposited coating had a nanocrystalline structure with low oxide and porosity contents. The hardness of coatings was in the range of 5.40-6.08 GPa, which is higher than that obtained for NiAl coating deposited using conventional powders.  相似文献   

9.
NiAl金属间化合物的研究概述   总被引:4,自引:0,他引:4  
综述了NiAl金属间化合物的力学性能、合金化以及提高强韧性的方法,并对NiAl合金的制备方法作了介绍,特别是利用电热爆炸超高速定向喷涂技术可原位生成亚微米晶NiAl金属间化合物及金属间化合物复合涂层.  相似文献   

10.
SYNTHESISOFNANO-METERTiAlINTERMETALLICCOMPOUNDTHROUGHMECHANICALALLOYINGM.Qi;L.S.CuiandD.Z.Yang(DepartmentofMaterialsEngineeri...  相似文献   

11.
This investigation considers the alloying of NiAl powders, with 0, 10, 20, 30, and 40 wt.% of ZrO2 added, by the CO2 laser upon Ti–6Al–4V base metals. Trial experiments are performed to obtain the optimum thickness of the powder, 0.1 mm, and the transverse speed, 1 mm/s, upon which the hardfacing process was based. The microstructures of the alloying layers were analyzed by OM, X-ray spectroscopy and SEM/EDS. The mechanical properties of the alloying layers were analyzed by micro-hardness and impact tests. The results indicated that the microstructure of the hardfacing layer was finer and its micro-hardness was higher than those of the base material. During the hardfacing process, NiAl and ZrO2 powder were dissolved in a molten pool, reacted with other elements, and new phases were then formed. Impact tests revealed that the absorption of the vibration increased as the ZrO2 added.  相似文献   

12.
Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N2 as accelerating gas. NiAl intermetallic compound was evolved in situ through postspray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and x-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can be successfully deposited by cold spraying using the mechanically alloyed powder as feedstocks. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850 °C leads to complete transformation from Ni/Al alloy to NiAl intermetallic compound.  相似文献   

13.
采用机械合金化法制备纳米Cu-10%Nb合金,通过显微硬度测量以及高分辨透射电镜观察,对该合金粉末在室温球磨过程中的微观结构演变和形变孪生特性进行研究;利用局部应力集中模型分析形变孪晶的形核机制。结果表明:随着球磨时间的增加,该合金硬度(HV)不断升高,球磨120 h后可达4.8 GPa;该合金在球磨初期以位错胞结构为主;球磨50 h后,Cu平均晶粒尺寸减小至约50 nm,部分区域出现纳米形变孪晶;继续增加球磨时间,孪晶数量增加,孪晶界强化效果显著;由于孪生将促进纳米晶粒的进一步细化,球磨120 h后,纳米晶尺寸减小到20 nm以下。  相似文献   

14.
In this paper we present the results of our efforts to synthesize the nanocrystalline MgB2 superconducting compound from elemental Mg and B powders by combination of controlled mechanical pre-alloying in a magneto-mill Uni-Ball-Mill 5 under shearing mode followed by electrical discharge (ED) assisted mechanical alloying (MA). There is no conclusive evidence of MgB2 formation in the Mg-2B mixture using crystalline boron after controlled mechanical alloying (CMA) under protective argon or helium atmosphere as well as subsequent ED assisted alloying. There seems to be some XRD evidence of the strongest (1 0 1) MgB2 peak presence in the Mg-2B mixture processed using both crystalline and amorphous boron after CMA under hydrogen as well as subsequent ED assisted alloying but this evidence is rather ambiguous. We postulate here that it is highly likely that a certain critical Mg nanograin size must be achieved before a successful reaction to form nanocrystalline MgB2 is going to be completed. Following recent report by Gümbel et al. [Appl. Phys. Lett. 80 (2002) 2725] this critical value can be roughly estimated at 15 nm or less. Calculations of the Mg nanograin size in the present work show that only three Mg-2B powders ball milled under hydrogen meet this critical nanograin size criterion for the Mg phase. However, a massive formation of the β-MgH2 hydride in these powders consumes the available Mg in the reaction with hydrogen which may leave inadequate concentration of Mg to form MgB2 even though the nanograin size of Mg is sufficiently refined, say below 15 nm.  相似文献   

15.
NiAl力学性质合金化效应的第一原理计算   总被引:1,自引:0,他引:1  
采用第一原理赝势平面波方法,计算几种合金化元素X(X=Cr、Mn、Fe、Co和Cu)与不同Fe含量(0,3.125%,4.167%,6.25%,摩尔分数)(NiFe)Al超胞的几何与电子结构,并采用如下几个力学参数:弹性常数C44、Cauchy压力参数(C12-C44)、弹性模量E和剪切模量G及比值G/B0等,表征和评判了合金化元素X与不同Fe含量对NiAl金属间化合物延性与硬度的影响。结果表明:高浓度(6.25%)合金化虽可提高NiAl晶体的硬度,但却导致NiAl延展性降低,合金化后NiAl硬度增加的次序为:(Ni7Mn)Al8>(Ni7Co)Al8>(Ni7Fe)Al8>(Ni7Cr)Al8>(Ni7Cu)Al8>NiAl,其延性降低次序则与硬度增加次序相反;随着Fe含量的升高,NiAl晶体的硬度增加,但其使硬度增加的上限约为4%,而随着Fe含量的降低,NiAl晶体的延性逐步增大,当Fe含量低到一定程度时,可改善NiAl晶体的本征脆性。  相似文献   

16.
《Intermetallics》2007,15(2):201-205
In the present study mechanical alloying followed by hot-pressing consolidation has been used to obtain bulk nanocrystalline FeAl intermetallic compound. Nanocrystalline powder of Fe(Al) solid solution was the product of ball milling. This powder was sintered at 1000 °C for 180 s under a pressure of 7.7 GPa. Structural investigations of the consolidated material revealed that ordering of the Fe(Al) and its transformation into FeAl intermetallic occur during sintering and that the mean crystallite size of FeAl is 23 nm. The microhardness of the produced material is 1235 HV0.2, its density is 99.8% of theoretical value and its open porosity is 0%. The results obtained show that the quality of compaction with preserving nanometric grain size of the FeAl intermetallic is satisfactory and its microhardness is relatively high.  相似文献   

17.
脉冲放电等离子烧结NiAl金属间化合物的组织与性能   总被引:2,自引:2,他引:0  
通过脉冲放电等离子烧结技术对经机械合金化法合成的NiAl金属间化合物粉末进行了烧结,研究了NiAl金属间化合物的微观组织和力学性能。结果表明,在较低温度下可制备接近完全致密的NiAl金属间化合物块体材料。  相似文献   

18.
Nanocrystalline Ni3Al was fabricated through mechanical alloying of elemental powders and spark plasma sintering. The nanocrystalline Ni3Al has a nearly full density after being sintered at 1223 K for 10 min under a pressure of 65 MPa. Isothermal and cyclic oxidations of nanocrystalline Ni3Al were tested at 1173–1373 K with intervals of 100 K. The results indicate that nanocrystalline Ni3Al exhibits excellent isothermal and cyclical oxidation resistance. The oxide scales consist primarily of dense and continuous -Al2O3. The grain refinement is beneficial for improving the oxidation resistance of Ni3Al by providing more nucleation centers for the Al2O3 formation, promoting the selective formation of Al2O3 and improving the adhesion of oxide scales to the matrix.  相似文献   

19.
The formation and site preference energies and volume changes of single and pair of defects of ternary alloying elements in γ-TiAl intermetallic compound were studied by the density functional theory. Slight tendency to clusterization of antisite defects has been found. This may lead to disorder in the system. The V and Cr atoms prefer to reside in the Ti sublattice. The formation energy for Cr–Cr, Cr–V and V–V nearest neighbour pairs are in the 1.3–2 eV range. The Al antisite in Ti sublattice requires much less energy than the Ti antisite in Al sublattice. The amorphisation process of TiAl alloy was studied by means of high energy ball milling of Ti and Al elemental powders, which produces amorphous structure after 40 h. The amorphous states were studied by the DFT calculations of many random atomic configurations and the results were compared with the NiAl compound. Possible explanation for the amorphisation of the TiAl compound is presented.  相似文献   

20.
选用等离子喷涂技术在CuCo2Be合金表面制备了NiAl涂层.用DTA,XRD,SEM,EDS等分析手段探讨了NiAl涂层的形成机理及其组成涂层的化合物、物相的形成特点及规律.结果表明,由DTA分析可知选用的NiAl复合粉末在在600~671.81℃范围内出现两个放热峰,推测在此温度范围内发生两次放热反应;SEM,EDS分析表明,涂层组织呈现明显的层状,镍铝化合物为角状,XRD分析发现涂层物相在成形的不同阶段和时间内其生成的化合物类型、数量都呈现不同的变化.利用XRD,EDS分析界面处各相的生成及元素的分布、扩散情况,研究表明在界处存在一定的元素扩散,界面除了机械锚合也存在一定的微冶金结合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号