首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
ABSTRACT

A new laboratory kiln was developed and built to perform over a very wide range of drying conditions. For example, the dry bulb temperature can vary from 30°C to 150°C and the dew point can be adjusted between 20°C and 130°C. Obviously, with such a high level of dew point, pressures over atmospheric pressure may be induced inside the chamber. For this reason, the kiln has been designed to withstand pressure of up to 3 bars. This kiln can also perform vacuum drying.

A programmable controller allows the temperature levels to be maintained within ± 0.2°C. Because the whole kiln can be heated only through the agitated water present at the bottom of the kiln, the load temperature can be increased up to 130°C in saturated conditions, without any change of moisture content.

The kiln has various sensors attached and is capable of withstanding severe conditions (high temperature, saturated vapour and elevated pressures). At present, air and water temperatures as well as temperature at different locations within the board can be collected during the drying process. A load cell and pressure gauges are also available. The first tests performed using this equipment are presented at the end of the paper.  相似文献   

2.
We briefly introduce the main results obtained in our laboratory about high temperature drying kinetic of softwood and hardwood. We point out during drying the acceleration effect of pressure gradient in vapour phase which develops in the wood.

Then we give the main experimental results carried out on a small industrial kiln which can dry wood boards with moist air and superheated steam at high temperature till 180°C and velocity above to 6 m/s. The drying process is completely automated. Tested species are : beech, poplar, fir and maritime pine.

We show that the drying kinetics are almost the same using the industrial kiln or the wind tunnel and we define for different board thicknesses, temperatures and velocities the optimal sequences of the process. The influence on the quality of the pretreatment, the various drying periods and the post-steaming is of importance.  相似文献   

3.
In continuation of a series of tests, the original results of oak drying in an evacuated kiln are presented here for different plate temperatures and for various pressures in the kiln. These results include more particularly the drying curves, the evolution of temperature, of moisture and of pressure in and on the wood. They evidence the pressure and the levels of temperature occurring in the wood during the drying period.

These results also allow the development of two types of drying models a simple monodimensional model of drying curves from the analytical solutions of the equations of water diffusion in the wood and, moreover, a model, in two dimensions, of temperature, moisture and pressure fields in the wood by applying the finite element method. The boundary conditions of the second model can be fixed with precision thanks to the results of the first model. In both cases, the proposed solutions are justified by experimental results.  相似文献   

4.
The present study reports the results of laboratory scale experiments carried out to judge the drying characteristics of soybean at relatively high drying temperatures (110-130° C) and continued up to dehydration. A theoretical model similar to Page's model is offered and its validity is examined. Dehydration times of 16 h. 14 h and 12 h at 110, 120 and 130°c respectively were observed for soybeans having initial moisture content of 12.87 per cent d. b. The models developed were found to follow the theoretical model well. Generalised drying equation for prediction of drying rate and moisture content at any drying time and temperature conditions is proposed.  相似文献   

5.
Experimental drying rates during high temperature drying of Yellow Poplar is analyzed to determine types of drying mechanism. Drying rate during the constant rate period and effective diffusivity during the falling rate periods were obtained at dryer temperatures ranging from 100°C to 150°C.

The drying curve shows three drying regimes: a constant-rate period, and two falling rate periods. The constant rate period, where the drying rate is a linear function of time, is controlled by the rate of heat transfer to the wood surface. Both falling rate periods show a drying rate which is a linear function of the square root of time. Floisture migration during the first falling rate is by simultaneous capillary action and liquid diffusion. while moisture'migration takes place by vapor diffusion during the second falling rate period. This occurs when the moisture content of the wood falls below the fiber saturation point. The effective diffusion coefficient during both periods is found to be constant.  相似文献   

6.
Dehydrated salted meat is widely used in Brazil as a very important source of animal protein. The main objective of this kind of processing is water removal. initially by osmotic pressure changes and then by drying, resulting in a product with intermediate moisture levels.

In this work, mass transfer and salt diffusion in pieces of meat submitted to wet and dry salting were studied. Slabs of beef m. trapezius with an infinite plate geometry were salted in a NaCl saturated solution or in a dry salt bed, at two temperatures (10 and 20°C) and different time exposures (120 min and 96 hours). Equilibration studies were extended up to six days.

It was observed that water loss increased with salt uptake, for increasing periods of times. At 20°C the moisture loss was higher than it was at 10°C in both salting processes. On the other hand, the kinetics of salt uptake and moisture loss were of greater importance in the process of dry salting than in that of wet salting.

The salt diffusion coefficient for wet salting was 0.26 × 10-10m2/s at20°C and 0.25 × 10-10 m2/s at 10°C and for the dry salting the values were 19.37 × 10-10 m2/s at 20°C and 17.21 × 10-10 m2/s at 10°C.  相似文献   

7.
Energy consumption was quantified in the drying of 2.5 cm thick red oak lumber in a 1.2 m3 steam heated experimental dry kiln. The aluminum pre-fab kiln is located indoors and was wrapped with 5 cm thick extruded polystyrene (R=10) for the experimental drying. Transmission loss accounted for about 80% of the energy/kilogram of water removed from the wood. The maximum value was for the 60°C DBT due to comparatively high transmission loss combined with maximum venting loss. Batch venting reduced average energy consumption per kiln run by over 6% compared to the conventional kiln schedule.

Average board shrinkage was over 2% less for drying with a low temperature schedule compared to drying by the conventional schedule for red oak. This was due to less compression set developing in the board interior at low wood temperatures, accompanied by more tension set in the surface layers. The mechano-sorptive results were in full agreement with McMillen's conclusions from his research on red oak.  相似文献   

8.
Drying kinetics of convective, vacuum, and microwave drying of a pharmaceutical product, chlorpropamide, has been investigated on a laboratory scale, in the temperature interval from 40°C to 60°C, and the range of microwave heating power from 154 W/kgdm to 385 W/kgdm.

The experimental data obtained were approximated with the “thin-layer” equation and a two parameter exponential model. In order to compare convective, vacuum, and microwave drying, effective diffusion coefficients and specific heat consumption were calculated for each drying method.

Higher rates and shorter drying times were achieved at a higher temperature and microwave heating power. The highest drying rates and the lowest specific heat consumption were achieved with microwave drying. This leads to the conclusion that microwave heating is the most appropriate method for drying of chlorpropamide. The quality of product was not changed for all applied methods.  相似文献   

9.
Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were prepared and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI.

Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177°C, and 204°C before and after exposure to water-boil and to thermal aging at 204°C for up to 1000 hours.

The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260°C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177°C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204°C [68% versus 50% (STPI-LARC-2) and 40% (LARC-TPI)].

These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.  相似文献   

10.
This work presents a method to predict the stress and breakage that is caused by the drying of hygros-copic materials. Stresses were predicted for a viscoclasic cylinder with the properties of extruded durum semolina, or pasta noodles. The stresses were calculated as functions of the transient moisture and tem-perature gradients in the material which were predicted for the combined processes of drying, tempering,and cooling. The time and radial position of failure were predicted based on failure data for extruded semolina.

Isotherm data for extruded durum semolina were obtained for temperatures from 40 to 60°C and for relative humidities from 75 to 95%. The results were fit with a modified form of Henderson's equation.Thermal conductivities were measured for temperatures from 30 to 50°C and a moisture range of 12 to 27% (dry basis).

A drying model based on the principles of irreversible thermodynamics; (Fortes, 1978; Fortes and Okos, 1981a, 1981b) was used to successfully predict drying curves for a range of experimental conditions. Transient moisture and temperature profiles were calculated numerically, and a receding evapora-tion front was predicted to exist. Drying was predicted to be a coupled liquid, vapor, and heat transport phenomena.

The drying data were used in a stress analysis of a Maxwell viscoelastic cylinder to predict trends in stress development under various contiitions of combined drying, tempering, and cooling. High temperature-high humidity drying, HTHH, (lOO°C, 65% RH) was compared with low temperature-low humidity drying, LTLH, (53°C, 13% RH). The HTHH drying offered definite advantages in terms of reduced product breakage susceptibility. The reasons for those advantages were increased failure strength and a decreased moisture gradient at the end of drying. In a five-stage drying process, the cooling stage was shown to have a significant impact on the predicted levels of stress and on the strength of the extruded material. Analysis of the model suggested that gradual temperature and humidity transitions from stage to stage in multistage processes were important to product quality.  相似文献   

11.
The drying of Sultana seedless grapes was investigated under intermittent and continuous operating conditions in a laboratory solar installation involving a thermal storage bed and an auxiliary heater. The effect of pretreatment, and of the a i r velocity on the drying rate of the grapes at constant temperature was also studied in relation t o the quality of the dried product.

Solar drying of the grapes was accomplished in 30.5 to 60.5 h of intermittent operation, or 19 to 60 h of continuous drying, involving the thermal storage bed and the auxiliary heater. The shortest drying time (19 h ) and the highest quality dried product were obtained with grapes dipped in a hot (80 C ) solution of sodium hydroxide and ethyl oleate, which were dried continuously at 42°C and 2m/s, air temperature and velocity respectively.

The mean apparent diffusivity of moisture in raisins at 6o°C and air velocity 2m/s was estimated as 1.0.10-10 m2/s.  相似文献   

12.
Several types of ink are used in web offset printing. However, heatset inks predominate in general commercial work. In these inks, the vehicle consists of resin dissolved in a solvent, and drying takes place mainly by evaporation. In heatset web offset printing, the printed web is passed through dryers, which raise the temperature of the web enough to cause evaporation of the solvent. leaving only the resin to bind the pigment into a film and to the paper.

Since the solvents used in the heatset inks vary in boiling range from approximately 232° C to 316° C, and the solvent selected depends on the printing conditions, it is necessary to determine the vapor pressure values of heatset inks versus web temperatures for drying calculations. The isoteniscope method is limited to only the vapor pressure measurement of liquids. It cannot be used for materials such as heatset inks. To overcome this difficulty, an apparatus was designed and con- structed by TEC Systems for directly measuring the vapor pressure versus temperature of heatset inks from approximately 21°C to 316°C. In this paper, TEC's apparatus, test procedure developed, and typical test results for pure solvents and heatset inks will be described.  相似文献   

13.
A technique of intelligent computation of moisture content in shrinkable biomaterials from multiple predictors was developed. All measurable predictors were structured in three sets: biomaterial properties (volume, density, porosity, diffusivity); drying conditions (time, air temperature, humidity, velocity, pressure); and drying technologies. Two typical drying models were considered: time-dependent (thermodynamical) and time-independent (relational). The relationship between predictors and moisture content was established on the basis of multi-factorial linear regression (MLR) and neural networks (NN). Accuracy of statistical approximation was strongly dependent on drying model and chosen set of predictors. Time-independent models demonstrated better accuracy (MSE = 0.214) than time-dependent models (MSE = 0.254). Redundant predictors did not affect the accuracy and generalization ability of statistical models.

Results of NN training and testing showed superior accuracy with respect to statistical models. NN worked perfectly well for any combination of non-correlated predictors, improving accuracy to MSE = 0.01. Elimination of redundant predictors further improved accuracy and generalization ability of NN models.

The performance of both models was tested for drying of ginseng roots in the range of temperatures from 38 to 50°C, sizes from 10 to 32 mm, and relative humidity from 12 to 40%. Due to the high accuracy and computational efficiency, NN can be used as online estimator of moisture content in drying process.  相似文献   

14.
FREEZE DRYING CHARACTERISTICS OF MEDICINAL HERBS   总被引:11,自引:0,他引:11  
The demand on traditional herb medicine shows a tremendous increase. Conventionally, medicinal herbs are dried at high temperatures, causing quality deterioration. The freeze-drying characteristics of medicinal herbs were studied, and the quality of the freeze-dried products assessed. The herbs studied were medicinal ginger and Javanese pepper.

It was found that drying time, was more influenced by chamber pressure and freezing rate than by the surface temperature of the product. Higher chamber pressures and faster freezing rates tended to shorten the initial (primary) drying time but lengthen the secondary drying time. Quality of the freeze-dried product was assessed as slightly lower than the quality of the raw material, but higher than when oven dried at 35-40°C, and met the MMI standard.  相似文献   

15.
Germination and moisture content loss data were collected of maize with a moisture content ranging from 15 to 32% (w.b.), an air temperature from 40 to 75°C, and an exposure time from 0.5 to 180 minutes.

A germination-retention model was developed based on the normally distributed death-rate theory (NDD). The NDD model was combined with a concurrent-flow (CCF) dryer model, and tested against viability data of maize dried in a commercial two-stage CCF dryer. Acceptable agreement between the predicted and experimental viabilities was obtained.

The effect of the CCF dryer design, and of several operating parameters, on the loss of maize-seed viability was analyzed. Simulation with the NDD-CCF dryer model shows that high quality seed can be produced by drying at air temperatures well above 100°C.  相似文献   

16.
Only a few kinetic studies have been reported in the literature on the evolution of comercial quality of maize during drying and to the best of our knowledge no model allows to predict the dynamic coupling of drying and product quality evolution. The aim of this work is to present new information on the effects of the operating conditions (harvest year, weight of maize to be dried, initial moisture content of the grain and air temperature) on the evolution of maize saline-soluble protein denaturation and the wet-milling quality during drying of maize in a batch floatation fluidized bed dryer. Also, kinetic laws are proposed for the quality criteria that will be combined with drying model already derived [1, 2].

The experimental results show that the degradation of the main components of maize (starch and proteins) is considerably affected by the temperature level and to a lesser extent by the initial moisture content of grains. Beyond 70°C, the denaturation of saline-soluble proteins occurs rapidly in the heat-up period of the grains. As for the wet-milling quality degradation, it starts only above 90°C.

Kinetic laws derived from this study express the variation of the degradation rate of proteic and wet milling quality as functions of the solubility of saline-soluble proteins or the starch-gluten separation index, the grain moisture content and temperature.  相似文献   

17.
Pine sapwood was dried in an air convection kiln at temperatures between 60-80 °C. Temperature and weight measurements were used to calculate the position of the evaporation front beneath the surface. It was assumed that the drying during a first regime is controlled by the heat transfer to the evaporation front until irreducible saturation occurs. Comparisons were made with CT-scanned density pictures of the dry shell formation during initial stages of drying of boards.

The results indicate a receding evaporation front behaviour for sapwood above approximately 40-50% MC when the moisture flux is heat transfer controlled. After that we finally reach a period where bound water diffusion is assumed to control the drying rate.

The heat transfer from the circulating air to the evaporation front controls the migration flux. In many industrial kilns the heating coils therefore have too small heat transfer rates for batches of thin boards and boards with high sapwood content.  相似文献   

18.
A mathematical model for the drying rate of granular particles in a multistage inclined fluidized bed(IFB) is presented from the standpoint of simultaneous heat and mass transfer, with taking the effect of mechanical vibration added vertically into consideration.

Steady-state distributions for the temperatures and concentrations of the particles and the heating gas, and for the moisture content of the particles are numerically calculated based on the present model. The calculated results show fairly good agreement with the experimental data, which were obtained from the drying experiments of brick particles in a three-stage IFB using comparatively low temperature air(40-60°C) as the heating gas.

It has been found within the range of the experimental conditions employed that, the mechanical vibration added vertically enhances the over-all drying rate of the particles and its effect can be considered equivalent to an increase in the air velocity.  相似文献   

19.
A mathematical model simulating the heat and mass transfer process during high intensity drying of paper and board has been developed. The model is successful in predicting the vapor pressure developments, pressure driven bulk flow of liquid and vapor, and increased drying rates during high-intensity drying, closely matching the experimental determination.

The model predicts substantial amounts of water removal in the liquid form during high-intensity drying being pushed out of the web by pressurized vapor zone. Water removal by pressure flow of liquid could account for as much as one-third of the total water removed.

Similar to drying under conventional conditions, the existence of a dry zone, wet zone and an intermediate zone with accompanying advancing heat pipe has also been shown for drying under high intensity conditions.  相似文献   

20.
After presenting the characteristics and the data acquired in an industrial evacuated kiln, a simplified analysis of heat and mass transfers is proposed. This analysis is based on the existence of a evaporization front determining two zones in the longitudinal direction :

-a dried zone in which moisture is less than 30 %

-a wet zone in which moisture is still at its initial value.

Such a hypothesis allows to study transfers transversally first, then longitudinally. Both equation systems ore linked by conditions of continuity for mass and energy.

This study allows to determine the shapes of the temperature and pressure curves in the longitudinal direction. The linearity of the variation of the average drying velocity versus the average moisture content of the board is also proved. Finally, the modeling of mechanical phenomena thanks to a finite element program shows the rupture zones appearing during the drying process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号