首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During nystagmus induced by the angular vestibuloocular reflex (aVOR), the axis of eye velocity tends to align with the direction of gravito-inertial acceleration (GIA), a process we term "spatial orientation of the aVOR." We studied spatial orientation of the aVOR in rhesus and cynomolgus monkeys before and after midline section of the rostral medulla abolished all oculomotor functions related to velocity storage, leaving the direct optokinetic and vestibular pathways intact. Optokinetic afternystagmus and the bias component of off-vertical-axis rotation were lost, and the aVOR time constant was reduced to a value commensurate with the time constants of primary semicircular canal afferents. Spatial orientation of the aVOR, induced either during optokinetic or vestibular stimulation, was also lost. Vertical and roll aVOR time constants could no longer be lengthened in side-down or supine/prone positions, and static and dynamic tilts of the GIA no longer produced cross-coupling from the yaw to pitch and yaw to roll axes. Consequently, the induced nystagmus remained entirely in head coordinates after the lesion, regardless of the direction of the resultant GIA vector. Gains of the aVOR and of optokinetic nystagmus to steps of velocity were unaffected or slightly increased. These results are consistent with a model in which the direct aVOR pathways are organized in semicircular canal coordinates and spatial orientation is restricted to the indirect (velocity storage) pathways.  相似文献   

2.
M Fetter 《Canadian Metallurgical Quarterly》1996,40(5-6):315-8; discussion 318-9
The otolith-semicircular canal interaction during postrotatory nystagmus was studied in six normal human subjects by applying fast, short-lasting, passive head and body tilts (90 degrees in the roll or pitch plane) 2 s after sudden stop from a constant velocity rotation (100 degrees/s) about the earth-vertical axis in yaw. Eye movements were measured with 3-D magnetic search coils. Following the head tilt, activity in the semicircular canal primary afferents continues to reflect the postrotatory angular velocity vector in head-centered coordinates, whereas otolith primary afferents signal a different orientation of the head relative to gravity. Pitch (roll) tilts away from upright during postrotatory nystagmus after yaw rotation elicited a transient vertical (torsional) VOR. Despite the change in head orientation relative to gravity, postrotatory eye velocity decayed closely along the axis of semicircular canal stimulation (horizontal in head coordinates). These results suggest that postrotary nystagmus is largely organized in head-centered rather than gravity-centered coordinates in humans as suggested by the Purkinje-sensation.  相似文献   

3.
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED)  相似文献   

4.
The mesencephalic interstitial nucleus of Cajal (iC) is considered the neural integrator for vertical and torsional eye movements and has also been proposed to be involved in saccade generation. The aim of this study was to elucidate the function of iC in neural integration of different types of eye movements and to distinguish eye movement deficits due to iC impairment from that of the immediately adjacent rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). We addressed the following questions: (1) According to the neural integrator hypothesis, all eye movements including the saccadic system and the vestibulo-ocular reflex (VOR) share a common neural integrator. Do iC lesions impair gaze-holding function for vertical and torsional eye positions and the torsional and vertical VOR gain to a similar degree? (2) What are the dynamic properties of vertical and torsional eye movements deficits after iC lesions, e.g., the specificity of torsional and vertical nystagmus? (3) Is iC involved in saccade generation? We performed 13 uni- and three bilateral iC inactivations by muscimol microinjections in four alert monkeys. Three-dimensional eye movements were studied under head-stationary conditions during vertical and torsional VOR. Under static conditions, unilateral iC injections evoked a shift of Listing's plane to the contralesional side (up to 20 degrees), which increased (ipsilesional ear down) or decreased (ipsilesional ear up) by additional static vestibular stimulation in the roll plane, i.e., ocular counterroll was preserved. The monkeys showed a spontaneous torsional nystagmus with a profound downbeat component. The fast phases of torsional nystagmus always beat toward the lesion side (ipsilesional). Pronounced gaze-holding deficit for torsional and vertical eye positions (neural integrator failure) was reflected by the reduction of time constants of the exponential decay of the slow phase to 330-370 ms. Whereas the vertical oculomotor range was profoundly decreased (up to 50%) and vertical saccades were reduced in amplitude, saccade velocity remained normal and horizontal eye movements were not affected. Bilateral iC injections reduced the shift of Listing's plane caused by unilateral injections, i.e., back toward the plane of zero torsion. Torsional nystagmus reversed its direction and ceased, whereas vertical nystagmus persisted. In contrast to unilateral injection, there was additional upbeating nystagmus. Time constants of the position integrator of the gaze-holding system did not differ between unilateral and bilateral injections. The range of stable vertical eye positions and saccade amplitude was smaller when compared with unilateral injections, but the main sequence remained normal. Dynamic vestibular stimulation after unilateral iC injections had virtually no effect on torsional and vertical VOR gain and phase at the same time when time constants already indicated severe integrator failure. Torsional VOR elicited a constant slow-phase velocity offset up to 30 degrees toward the contralesional side, i.e., in the opposite direction to spontaneous torsional nystagmus. Likewise, vertical VOR showed a velocity offset in an upward direction, i.e., opposite to the spontaneous downbeat nystagmus. Contralesional torsional and upward vertical quick phases were missing or severely reduced in amplitude but showed normal velocity. In contrast, bilateral iC injections reduced the gain of the torsional and vertical VOR by 50% and caused a phase lead of 10-20 degrees (eye compared with head velocity). We propose that the slow-phase velocity offset during torsional and vertical VOR reflects a vestibular imbalance. It therefore appears likely that the vertical and torsional nystagmus after iC lesions is not only caused by a neural integrator failure but also by a vestibular imbalance. Unilateral iC injections have clearly differential effects on the VOR and the gaze-holding function. (ABSTRACT TRUNCATED)  相似文献   

5.
1. We studied the contribution of the individual semicircular canals to the generation of horizontal and torsional eye movements in cynomolgus monkeys. Eye movements were elicited by sinusoidal rotation about a vertical (gravitational) axis at 0.2 Hz with the animals tilted in various attitudes of static forward or backward pitch. The gains of the horizontal and torsional components of the vestibuloocular reflex (VOR) were measured for each tilt position. The gains as a function of tilt position were fit with sinusoidal functions, and spatial gains and phases were determined. After control responses were recorded, the semicircular canals were plugged, animals were allowed to adapt, and the test procedure was repeated. Animals were prepared with only the anterior and posterior canals intact [vertical canal (VC) animals], with only the lateral canals intact [lateral canal (LC) animal], and with only one anterior and the contralateral posterior canals intact [right anterior and left posterior canal (RALP) animals; left anterior and right posterior canal (LARP) animals]. 2. In normal animals, the gain of the horizontal (yaw axis) velocity of the compensatory eye movements decreased as they were pitched forward or backward, and a torsional velocity appeared, reversing phase at the peak of the horizontal gain. After the anterior and posterior canals were plugged (LC animal), the horizontal component was reduced when the animal was tilted backward; the gain was zero with about -60 degrees of backward tilt. The spatial phase of the torsional component had the same characteristics. This is consistent with the fact that both responses were produced by the lateral canals, which from our results are tilted between 28 and 39 degrees above the horizontal stereotaxic plane. 3. After both lateral canals were plugged (VC animals), horizontal velocity was reduced in the upright position but increased as the animals were pitched backward relative to the axis of rotation. Torsional velocities, which were zero in the upright position in the normal animal, were now 180 degrees out of phase with the horizontal velocity. The peak values of the horizontal and torsional components were significantly shifted from the normal data and were closely aligned with each other, reaching peak values at approximately -56 degrees pitched back (-53 degrees horizontal, -58 degrees torsional). The same was true for the LARP and RALP animals; the peak values were at -59 degrees pitched back (-55 degrees horizontal, -62 degrees torsional). Likewise, in the LC animal the peak yaw and roll gains occurred at about the same angle of forward tilt, 35 degrees (30 degrees horizontal, 39 degrees torsional). Thus, in each case, the canal plugging had transformed the VOR from a compensatory to a direction-fixed response with regard to the head. Therefore there was no adaptation of the response planes of the individual canals after plugging. 4. The data were compared with eye velocity predictions of a model based on the geometric organization of the canals and their relation to a head coordinate frame. The model used the normal to the canal planes to form a nonorthogonal coordinate basis for representing eye velocity. An analysis of variance was used to define the goodness of fit of model predictions to the data. Model predictions and experimental data agreed closely for both normal animals and for the animals with canal lesions. Moreover, if horizontal and roll components from the LC and VC animals were combined, the summation overlay the response of the normal monkeys and the predictions of the model. In addition, a combination of the RALP and LARP animals predicted the response of the lateral-canal-plugged (VC) animals. 5. When operated animals were tested in light, the gains, peak values, and spatial phases of horizontal and roll eye velocity returned to the preoperative values, regardless of the type of surgery performed. This indicates that vision compensated for the lack o  相似文献   

6.
We have previously shown that fast phase axis orientation and primary eye position in rhesus monkeys are dynamically controlled by otolith signals during head rotations that involve a reorientation of the head relative to gravity. Because of the inherent ambiguity associated with primary otolith afferent coding of linear accelerations during head translation and tilts, a similar organization might also underlie the vestibulo-ocular reflex (VOR) during translation. The ability of the oculomotor system to correctly distinguish translational accelerations from gravity in the dynamic control of primary eye position has been investigated here by comparing the eye movements elicited by sinusoidal lateral and fore-aft oscillations (0.5 Hz +/- 40 cm, equivalent to +/- 0.4 g) with those during yaw rotations (180 degrees/s) about a vertically tilted axis (23.6 degrees). We found a significant modulation of primary eye position as a function of linear acceleration (gravity) during rotation but not during lateral and fore-aft translation. This modulation was enhanced during the initial phase of rotation when there was concomitant semicircular canal input. These findings suggest that control of primary eye position and fast phase axis orientation in the VOR are based on central vestibular mechanisms that discriminate between gravity and translational head acceleration.  相似文献   

7.
While there is agreement that unilateral vestibular deafferentation (UVD) invariably produces an immediate severe horizontal vestibulo-ocular reflex (HVOR) deficit, there is disagreement about whether or not this deficit recovers and, if so, whether it recovers fully or only partly. We suspected that this disagreement might mainly be due to experimental factors, such as the species studied, the means chosen to carry out the UVD, or the nature of the test stimulus used. Our aim was to sort out some of these factors. To do this, we studied the HVOR of alert guinea pigs in response to low and high acceleration sinusoidal and high acceleration impulses after UVD by either labyrinthectomy or by vestibular neurectomy. The HVOR in response to high acceleration impulsive yaw rotations was measured before, and at various times after, either unilateral labyrinthectomy or superior vestibular neurectomy. Following UVD, there was a severe impairment of the HVOR for ipsilesional rotations and a slight impairment for contralesional rotations, after either operation. This asymmetrical HVOR deficit in the guinea pig parallels the deficit observed in humans. Between the first measurement, which was made 1 week after UVD, and the last, which was made 3 months after UVD, there was no change in the HVOR. This lack of recovery was the same after labyrinthectomy as after vestibular neurectomy. The HVOR to low and high acceleration sinusoidal yaw rotations were measured after UVD, and the results were compared with those in response to impulsive rotations. For low acceleration sinusoidal rotations (250 degrees/s2), the gain was symmetrical, although reduced bilaterally. As the peak head acceleration increased, the HVOR became increasingly asymmetric. The HVOR asymmetry for sinusoidal rotations was significantly less than for impulsive rotations that had the same high peak head acceleration (2500 degrees/s2). Our results show that the HVOR deficit after UVD is the same in guinea pigs as in humans; that it is the same after vestibular neurectomy as after labyrinthectomy; that it is lasting and severe in response to high acceleration rotations; and, that it is more obvious in response to impulses than to sinusoids.  相似文献   

8.
Dynamics and kinematics of the angular vestibulo-ocular reflex in monkey: effects of canal plugging. J. Neurophysiol. 80: 3077-3099, 1998. Horizontal and roll components of the angular vestibulo-ocular reflex (aVOR) were elicited by sinusoidal rotation at frequencies from 0.2 Hz (60 degrees/s) to 4.0 Hz ( approximately 6 degrees/s) in cynomolgus monkeys. Animals had both lateral canals plugged (VC, vertical canals intact), both lateral canals and one pair of the vertical canals plugged (RALP, right anterior and left posterior canals intact; LARP, left anterior and right posterior canal intact), or all six semicircular canal plugged (NC, no canals). In normal animals, horizontal and roll eye velocity was in phase with head velocity and peak horizontal and roll gains were approximately 0.8 and 0.6 in upright and 90 degrees pitch, respectively. NC animals had small aVOR gains at 0.2 Hz, and the temporal phases were shifted approximately 90 degrees toward acceleration. As the frequency increased to 4 Hz, aVOR temporal gains and phases tended to normalize. Findings were similar for the LARP, RALP, and VC animals when they were rotated in the planes of the plugged canals. That is, they tended to normalize at higher frequencies. A model was developed incorporating the geometric organization of the canals and first order canal-endolymph dynamics. Canal plugging was modeled as an alteration in the low frequency 3-db roll-off and corresponding dominant time constant. The shift in the low-frequency 3-dB roll-off was seen in the temporal responses as a phase lead of the aVOR toward acceleration at higher frequencies. The phase shifted toward stimulus velocity as the frequency increased toward 4.0 Hz. By incorporating a dynamic model of the canals into the three-dimensional canal system, the spatial responses were predicted at all frequencies. Animals were also stimulated with steps of velocity in planes parallel to the plugged lateral canals. This induced a response with a short time constant and low peak velocity in each monkey. Gains were normalized for step rotation with respect to time constant as (steady state eye velocity)/(stimulus acceleration x time constant). Using this procedure, the gains were the same in canal plugged as in normal animals and corresponded to gains obtained in the frequency analysis. The study suggests that canal plugging does not block the afferent response to rotation, it merely shifts the dynamic response to higher frequencies.  相似文献   

9.
The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.  相似文献   

10.
Abnormalities in the vestibulo-ocular reflex (VOR) after unilateral vestibular injury may cause symptomatic gaze instability. We compared five subjects who had unilateral vestibular lesions with normal control subjects. Gaze stability and VOR gain were measured in three axes using scleral magnetic search coils, in light and darkness, testing different planes of rotation (yaw and pitch), types of stimulus (sinusoids from 0.8 to 2.4 Hz, and transient accelerations) and methods of rotation (active and passive). Eye velocity during horizontal tests reached saturation during high-velocity/acceleration ipsilesional rotation. Rapid vertical head movements triggered anomalous torsional rotation of the eyes. Gaze instability was present even during active rotation in the light, resulting in oscillopsia. These abnormal VOR responses are a consequence of saturating nonlinearities, which limit the usefulness of frequency-domain analysis of rotational test data in describing these lesions.  相似文献   

11.
Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.  相似文献   

12.
The three-dimensional (3-D) properties of the translational vestibulo-ocular reflexes (translational VORs) during lateral and fore-aft oscillations in complete darkness were studied in rhesus monkeys at frequencies between 0.16 and 25 Hz. In addition, constant velocity off-vertical axis rotations extended the frequency range to 0.02 Hz. During lateral motion, horizontal responses were in phase with linear velocity in the frequency range of 2-10 Hz. At both lower and higher frequencies, phase lags were introduced. Torsional response phase changed more than 180 degrees in the tested frequency range such that torsional eye movements, which could be regarded as compensatory to "an apparent roll tilt" at the lowest frequencies, became anticompensatory at all frequencies above approximately 1 Hz. These results suggest two functionally different frequency bandwidths for the translational VORs. In the low-frequency spectrum (<0.5 Hz), horizontal responses compensatory to translation are small and high-pass-filtered whereas torsional response sensitivity is relatively frequency independent. At higher frequencies however, both horizontal and torsional response sensitivity and phase exhibit a similar frequency dependence, suggesting a common role during head translation. During up-down motion, vertical responses were in phase with translational velocity at 3-5 Hz but phase leads progressively increased for lower frequencies (>90 degrees at frequencies <0.2 Hz). No consistent dependence on static head orientation was observed for the vertical response components during up-down motion and the horizontal and torsional response components during lateral translation. The frequency response characteristics of the translational VORs were fitted by "periphery/brain stem" functions that related the linear acceleration input, transduced by primary otolith afferents, to the velocity signals providing the input to the velocity-to-position neural integrator and the oculomotor plant. The lowest-order, best-fit periphery/brain stem model that approximated the frequency dependence of the data consisted of a second order transfer function with two alternating poles (at 0.4 and 7.2 Hz) and zeros (at 0.035 and 3.4 Hz). In addition to clearly differentiator dynamics at low frequencies (less than approximately 0.5 Hz), there was no frequency bandwidth where the periphery/brain stem function could be approximated by an integrator, as previously suggested. In this scheme, the oculomotor plant dynamics are assumed to perform the necessary high-frequency integration as required by the reflex. The detailed frequency dependence of the data could only be precisely described by higher order functions with nonminimum phase characteristics that preclude simple filtering of afferent inputs and might be suggestive of distributed spatiotemporal processing of otolith signals in the translational VORs.  相似文献   

13.
The vestibulo-ocular reflex (VOR) generates compensatory eye movements in response to angular and linear acceleration sensed by semicircular canals and otoliths respectively. Gaze stabilization demands that responses to linear acceleration be adjusted for viewing distance. This study in humans determined the transient dynamics of VOR initiation during angular and linear acceleration, modification of the VOR by viewing distance, and the effect of unilateral deafferentation. Combinations of unpredictable transient angular and linear head rotation were created by whole body yaw rotation about eccentric axes: 10 cm anterior to eyes, centered between eyes, centered between otoliths, and 20 cm posterior to eyes. Subjects viewed a target 500, 30, or 15 cm away that was extinguished immediately before rotation. There were four stimulus intensities up to a maximum peak acceleration of 2,800 degrees/s2. The normal initial VOR response began 7-10 ms after onset of head rotation. Response gain (eye velocity/head velocity) for near as compared with distant targets was increased as early as 1-11 ms after onset of eye movement; this initial effect was independent of linear acceleration. An otolith mediated effect modified VOR gain depending on both linear acceleration and target distance beginning 25-90 ms after onset of head rotation. For rotational axes anterior to the otoliths, VOR gain for the nearest target was initially higher but later became less than that for the far target. There was no gain correction for the physical separation between the eyes and otoliths. With lower acceleration, there was a nonlinear reduction in the early gain increase with close targets although later otolith-mediated effects were not affected. In subjects with unilateral vestibular deafferentation, the initial VOR was quantitatively normal for rotation toward the intact side. When rotating toward the deafferented side, VOR gain remained less than half of normal for at least the initial 55 ms when head acceleration was highest and was not modulated by target distance. After this initial high acceleration period, gain increased to a degree depending on target distance and axis eccentricity. This behavior suggests that the commissural VOR pathways are not modulated by target distance. These results suggest that the VOR is initially driven by short latency ipsilateral target distance dependent and bilateral target-distance independent canal pathways. After 25 ms, otolith inputs contribute to the target distance dependent pathway. The otolith input later grows to eventually dominate the target distance mediated effect. When otolith input is unavailable the target distance mediated canal component persists. Modulation of canal mediated responses by target distance is a nonlinear effect, most evident for high head accelerations.  相似文献   

14.
BACKGROUND: Pendular nystagmus commonly occurs in congenital and acquired disorders of myelin. OBJECTIVE: To characterize the nystagmus in 3 siblings with an infantile form of an autosomal recessive peroxisomal assembly disorder causing leukodystrophy. DESIGN: We examined visual function and measured eye movements using infrared oculography. We noted changes in eye speed and frequency before and after the administration of gabapentin to 1 patient. RESULTS: All 3 siblings showed optic atrophy and pendular nystagmus that was predominantly horizontal, at a frequency of 3 to 6 Hz, with phase shifts of 45 degrees to 80 degrees between the oscillations of each eye. Gabapentin administered to 1 child caused a modest improvement of vision and the reduction of the velocity and frequency of oscillations in the eye with worse nystagmus. CONCLUSION: The pendular nystagmus in these patients was due to their leukodystrophy and may have a similar pathogenesis to the oscillations seen in other disorders affecting central myelin.  相似文献   

15.
The influence of linear acceleration on optokinetic nystagmus (OKN) was studied in human subjects. Linear acceleration was applied to the subjects by means of the parallel swing and also by the transfer of the subjects in one direction, either right or left. The cortical form of OKN increased the frequency, amplitude, and eye speed of the slow phase. Of the three, the increase in eye speed was the most pronounced. The subcortical form of OKN was not only increased but was also disturbed by the linear acceleration. When the compensatory eye movement with linear acceleration and the slow phase of OKN were in the same direction, the nystagmus increased remarkably. Contrarily, when the two directions were opposed to each other, nystagmus was inhibited. These results proved that the otolithic organs are not only able to promote but also to inhibit visual function.  相似文献   

16.
Horizontal optokinetic nystagmus (OKN) as well as neuronal response properties in the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic system (NOT-DTN) were investigated in three monocularly deprived squirrel monkeys. In two monkeys occlusion of one eye was performed at birth (early) and in the third after 7 weeks (late). In adulthood, in early deprived monkeys monocular horizontal OKN tested through the non-deprived eye was symmetrical and in no way different from normal, i.e. stimulation in the temporonasal and nasotemporal direction elicited equal and robust responses. OKN through the early occluded eye, however, was grossly abnormal with low gain and great variability in the consistency of nasotemporal and temporonasal slow phase eye movements. When in the late deprived monkey the non-deprived eye was occluded a strong spontaneous nystagmus developed despite the deprived eye viewing a stationary pattern. The slow phases were directed from nasal to temporal for the deprived eye. When tested through the non-deprived eye all neuronal responses of the NOT-DTN were normal. The deprived eye's influence on NOT-DTN neurons was extremely weak. No neuron with a moderate or even dominant input from the deprived eye was found after early deprivation. In the late deprived case the deficit was not as severe but still the non-deprived eye was clearly dominating the responses in all neurons tested. Velocity tuning of neurons tested through the non-deprived eye was normal and qualitatively corresponded well to slow phase eye velocity in response to equivalent retinal slip during OKN. Through the early deprived eye, however, velocity tuning was extremely poor. It was somewhat better through the late deprived eye. We suggest that the dramatic deterioration in the optokinetic reflex found after long-term monocular deprivation for the amblyopic eye is probably caused by the almost complete loss of retinal and cortical input driven by that eye to the NOT-DTN. These results are discussed in relation to our previous results in cats and reports in the literature for humans with occlusion amblyopia.  相似文献   

17.
1. Fifteen hundred and thirty cells were recorded in the medial vestibular nucleus (MVN) of alert monkeys whose vestibuloocular reflex (VOR) had been adapted to one of two kinds of spectacles. The "high-gain" sample was recorded from monkeys that had worn 2.0 x telescopic spectacles; the gain of the VOR in the dark (eye velocity divided by head velocity) was greater than 1.5. The "low-gain" sample was recorded from monkeys that had worn goggles providing a visual field that was fixed with respect to the freely turning head; the gain of the VOR was less than 0.4. 2. Cells showing modulation of firing rate related to imposed head velocity were grouped into four categories: pure vestibular (10), vestibular-plus-saccade (10), vestibular-plus-position (10), and vestibular-plus-head/body (24). Sensitivity to head velocity was measured from averaged responses to sinusoidal, 0.4-Hz whole-body oscillation in the horizontal plane. Almost all cells (98%) having increased firing during ipsilateral head rotation received inputs from the horizontal semicircular canals. Conversely, 82% of cells having increased firing during contralateral head rotation received inputs from the vertical canals. 3. There were no statistically significant differences in resting discharge rate, phase shift, or sensitivity to head velocity between the high- and low-gain samples of any of the cell types. Nonetheless, there was a consistent tendency, evident in all the functionally defined cell groups, for the sensitivity to be about 20% greater in the high-gain samples. However, this difference is small by comparison with the fourfold difference in VOR gain. 4. Detailed scrutiny of the response properties of individual cells suggested that the small differences in sensitivity reflect small changes distributed throughout the population, rather than large and potentially significant changes within a small sub-population. 5. Our data indicate that large, adaptive changes in the gain of the VOR are accompanied by only minor changes in the vestibular sensitivity and no changes in the phase shift or resting discharge rates of cells in the MVN. It remains possible that large changes in vestibular sensitivity occurred in cells we did not sample or in subgroups we could not identify. We argue that this is unlikely and that the major changes underlying VOR plasticity occur after the first central synapse in the VOR pathways.  相似文献   

18.
Step-ramp target motion evokes a characteristic sequence of presaccadic smooth eye movement in the direction of the target ramp, catch-up targets to bring eye position close to the position of the moving target, and postsaccadic eye velocities that nearly match target velocity. I have analyzed this sequence of eye movements in monkeys to reveal a strong postsaccadic enhancement of pursuit eye velocity and to document the conditions that lead to that enhancement. Smooth eye velocity was measured in the last 10 ms before and the first 10 ms after the first saccade evoked by step-ramp target motion. Plots of eye velocity as a function of time after the onset of the target ramp revealed that eye velocity at a given time was much higher if measured after versus before the saccade. Postsaccadic enhancement of pursuit was recorded consistently when the target stepped 3 degrees eccentric on the horizontal axis and moved upward, downward, or away from the position of fixation. To determine whether postsaccadic enhancement of pursuit was invoked by smear of the visual scene during a saccade, I recorded the effect of simulated saccades on the presaccadic eye velocity for step-ramp target motion. The 3 degrees simulated saccade, which consisted of motion of a textured background at 150 degrees/s for 20 ms, failed to cause any enhancement of presaccadic eye velocity. By using a strategically selected set of oblique target steps with horizontal ramp target motion, I found clear enhancement for saccades in all directions, even those that were orthogonal to target motion. When the size of the target step was varied by up to 15 degrees along the horizontal meridian, postsaccadic eye velocity did not depend strongly either on the initial target position or on whether the target moved toward or away from the position of fixation. In contrast, earlier studies and data in this paper show that presaccadic eye velocity is much stronger when the target is close to the center of the visual field and when the target moves toward versus away from the position of fixation. I suggest that postsaccadic enhancement of pursuit reflects activation, by saccades, of a switch that regulates the strength of transmission through the visual-motor pathways for pursuit. Targets can cause strong visual motion signals but still evoke low presaccadic eye velocities if they are ineffective at activating the pursuit system.  相似文献   

19.
1. Our goal was to assess whether visual motion signals related to changes in image velocity contribute to pursuit eye movements. We recorded the smooth eye movements evoked by ramp target motion at constant speed. In two different kinds of stimuli, the onset of target motion provided either an abrupt, step change in target velocity or a smooth target acceleration that lasted 125 ms followed by prolonged target motion at constant velocity. We measured the eye acceleration in the first 100 ms of pursuit. Because of the 100-ms latency from the onset of visual stimuli to the onset of smooth eye movement, the eye acceleration in this 100-ms interval provides an estimate of the open-loop response of the visuomotor pathways that drive pursuit. 2. For steps of target velocity, eye acceleration in the first 100 ms of pursuit depended on the "motion onset delay," defined as the interval between the appearance of the target and the onset of motion. If the motion onset delay was > 100 ms, then the initial eye movement consisted of separable early and late phases of eye acceleration. The early phase dominated eye acceleration in the interval from 0 to 40 ms after pursuit onset and was relatively insensitive to image speed. The late phase dominated eye acceleration in the interval 40-100 ms after the onset of pursuit and had an amplitude that was proportional to image speed. If there was no delay between the appearance of the target and the onset of its motion, then the early component was not seen, and eye acceleration was related to target speed throughout the first 100 ms of pursuit. 3. For step changes of target velocity, the relationship between eye acceleration in the first 40 ms of pursuit and target velocity saturated at target speeds > 10 degrees /s. In contrast, the relationship was nearly linear when eye acceleration was measured in the interval 40-100 ms after the onset of pursuit. We suggest that the first 40 ms of pursuit are driven by a transient visual motion input that is related to the onset of target motion (motion onset transient component) and that the next 60 ms are driven by a sustained visual motion input (image velocity component). 4. When the target accelerated smoothly for 125 ms before moving at constant speed, the initiation of pursuit resembled that evoked by steps of target velocity. However, the latency of pursuit was consistently longer for smooth target accelerations than for steps of target velocity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
PURPOSE: The purpose of the study is to investigate diagnostic criteria and treatment methods for patients with congenital periodic alternating nystagmus (PAN). METHODS: A retrospective analysis was performed of clinical findings and serial eye movement recordings of patients with congenital PAN. Eighteen patients observed from 1983 through 1996 and diagnosed with congenital PAN are included. Five of these have ocular or oculocutaneous albinism. Nine of the 18 patients were treated. Three had Kestenbaum operations before referral to the authors, one was treated with baclofen, and five had large recessions of the four horizontal recti. The studied parameters included visual acuity (VA) and abnormal head posture (AHP); temporal aspects of PAN cycle, nystagmus waveforms, frequency, amplitude, and velocity; as well as mean foveation fraction, a mean percentage of the nystagmus cycle spent at retinal slip velocities less than 10 degrees per second. RESULTS: The authors diagnosed PAN in 9% of patients with congenital nystagmus, although most had not been diagnosed with PAN before referral, despite changing nystagmus. Sixteen patients had AHP, typically shifting. The PAN cycle was of variable duration, often with asymmetric right- and left-beating components. Although horizontal jerk nystagmus with accelerating slow phase was predominant, other waveforms were encountered in the active phase of PAN. In the quiet phase (close to null zone), similar, but less intense, oscillations than those in the active phase were characteristic. Half of the patients showed a combination of waveforms in both phases. Baclofen treatment was unsuccessful. Patients who had Kestenbaum procedures remained with AHP in the original or opposite direction, without change in nystagmus or VA. Large recessions of four horizontal recti proved uncomplicated. This treatment improved, at least for several years, AHP and VA and caused favorable changes in nystagmus parameters in all patients. Mean foveation fractions increased significantly after surgery. CONCLUSIONS: Congenital PAN often is underdiagnosed. Differing waveforms may indicate PAN. Evaluation of nystagmus, especially before surgery, for at least 3 minutes, preferably with eye movement recordings, is necessary to diagnose PAN and perhaps prevent Kestenbaum procedures, which seem inappropriate. Large horizontal recti recessions seem to provide safe and promising treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号