首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
High Range Resolution (HRR) -based Automatic Target Recognition (ATR) has attracted increasing attention due to a number of potential advantages over alternative radar techniques in moving target identification. Most current HRR-based ATR studies have been conducted using 1D HRR signatures. However, these 1D HRR signatures are generally plagued by scintillation effects, and thus demonstrate highly irregular behavior that dramatically degrades the performance and robustness of algorithms based on these signatures. In order to circumvent this difficulty, an alternative HRR radar data representation and processing technique is presented in this paper. This technique models and extracts the target characteristics directly, based on the 2D HRR raw data. In this paper, we first derive a general, but complex HRR radar model, and then simplify this model by instantiating a set of real-world radar and target parameters for the model. This simplification process produces two HRR radar models with different degrees of simplicity. After establishing this set of models, the typical HRR data processes, such as feature extraction and clutter suppression, are reduced to one problem, which is model-parameter estimation. Based upon the most simplified HRR model we proposed, we devise two model- parameter estimation algorithms. One is a scatterer extraction algorithm based on available 1D Parameter Estimation (1DPE), while the other is based on 2D discrete Fourier Transform (2DFT). In order to examine the performance of these two algorithms a set of simulations are conducted. The experimental results are presented, and the performance comparison between 1DPE and 2DFT is presented.  相似文献   

2.
We introduce a rotational invariant feature set for texture segmentation and classification, based on an extension of fractal dimension (FD) features. The FD extracts roughness information from images considering all available scales at once. In this work, a single scale is considered at a time so that textures with scale-dependent properties are satisfactorily characterized. Single-scale features are combined with multiple-scale features for a more complete textural representation. Wavelets are employed for the computation of single- and multiple-scale roughness features because of their ability to extract information at different resolutions. Features are extracted in multiple directions using directional wavelets, and the feature vector is finally transformed to a rotational invariant feature vector that retains the texture directional information. An iterative K-means scheme is used for segmentation, and a simplified form of a Bayesian classifier is used for classification. The use of the roughness feature set results in high-quality segmentation performance. Furthermore, it is shown that the roughness feature set exhibits a higher classification rate than other feature vectors presented in this work. The feature set retains the important properties of FD-based features, namely insensitivity to absolute illumination and contrast.  相似文献   

3.
A strategy for the joint classification of multiple segmentation levels from multisensor imagery is introduced by using synthetic aperture radar and optical data. At first, the two data sets are separately segmented, creating independent aggregation levels at different scales. Each individual level from the two sensors is then preclassified by a support vector machine (SVM). The original outputs of each SVM, i.e., images showing the distances of the pixels to the hyperplane fitted by the SVM, are used in a decision fusion to determine the final classes. The fusion strategy is based on the application of an additional classifier, which is applied on the preclassification results. Both a second SVM and random forests (RF) were tested for the decision fusion. The results are compared with SVM and RF applied to the full data set without preclassification. Both the integration of multilevel information and the use of multisensor imagery increase the overall accuracy. It is shown that the classification of multilevel-multisource data sets with SVM and RF is feasible and does not require a definition of ideal aggregation levels. The proposed decision fusion approach that applies RF to the preclassification outperforms all other approaches.  相似文献   

4.
This paper explores the use of wavelets to improve the selection of discriminant features in the target recognition problem using High Range Resolution (HRR) radar signals in an air to air scenario. We show that there is statistically no difference between four different wavelet families in extracting discriminatory features. Since similar results can be obtained from any of the four wavelet families and wavelets within the families, the simplest wavelet (Haar) should be used. We further show that a simple box classifier can be constructed from the extracted features and that any feature that classifies four or less training signals can be removed from the classifier without a statistically significant difference in the classifier performance. We use the box classifier to select the 128 most salient pseudo range bins and then apply the wavelet transform to this reduced set of bins. We show that by iteratively applying this approach, classifier performance is improved. The number of times the feature reduction and transformation can be performed while producing improved classifier performance is small and the transformed features are shown to quickly cause the performance to approach an asymptote.  相似文献   

5.
This article proposes a study of the reduced quaternion wavelet transform (RQWT) which has one shift-invariant magnitude and three angle phases at each scale from digital image analysis application. A new multiscale texture classifier which uses features extracted from the sub-bands of the RQWT decomposition is proposed in the transform domain. The proposed method can achieve a high texture classification rate. The experimental results can demonstrate the robustness of the proposed method and achieve a higher texture classification accuracy rate than a famous wavelet transform based classifier.  相似文献   

6.
Scale space classification using area morphology   总被引:13,自引:0,他引:13  
We explore the application of area morphology to image classification. From the input image, a scale space is created by successive application of an area morphology operator. The pixels within the scale space corresponding to the same image location form a scale space vector. A scale space vector therefore contains the intensity of a particular pixel for a given set of scales, determined in this approach by image granulometry. Using the standard k-means algorithm or the fuzzy c-means algorithm, the image pixels can be classified by clustering the associated scale space vectors. The scale space classifier presented here is rooted in the novel area open-close and area close-open scale spaces. Unlike other scale generating filters, the area operators affect the image by removing connected components within the image level sets that do not satisfy the minimum area criterion. To show that the area open-close and area close-open scale spaces provide an effective multiscale structure for image classification, we demonstrate the fidelity, causality, and edge localization properties for the scale spaces. The analysis also reveals that the area open-close and area close-open scale spaces improve classification by clustering members of similar objects more effectively than the fixed scale classifier. Experimental results are provided that demonstrate the reduction in intra-region classification error and in overall classification error given by the scale space classifier for classification applications where object scale is important. In both visual and objective comparisons, the scale space approach outperforms the traditional fixed scale clustering algorithms and the parametric Bayesian classifier for classification tasks that depend on object scale.  相似文献   

7.
This paper introduces a method for predicting HRR radar signatures and SAR images by creating a parametric three-dimensional scattering model from existing measured or model-based HRR signatures and/or SAR images. The method identifies potential three-dimensional persistent scatterers and estimates their scattering patterns. The results are parametric HRR signature and SAR image reconstruction functions of range, azimuth, and elevation.The modeling is accomplished through a scattering-based tomography technique. This technique localizes potential scatterers by using a filtered back-projection algorithm for the inverse radon transform. Once found, potential scatterers may then have their two-dimensional (azimuth and elevation) scattering patterns parameterized through the use of a truncated spherical harmonic series.Results using the reconstructions from HRR data are presented. A M109 model is reconstructed based on HRR signatures. The model allows us to predict what the vehicle would look like from any arbitrary orientation using SAR. Finally an M548 vehicle is modeled using 26 measured HRR signatures. The model is shown to be better than the synthetic model data. Additionally we show that the new model results can be combined with the synthetic data to provide a better target model for signature matching.  相似文献   

8.
Hyperspectral imaging (HSI) is the emerging method that combines traditional imaging and spectroscopy to provide the image with both the spatial and spectral information of the object present in the image. The major challenges of the existing techniques for HSI classification are the high dimensionality of data and its complexity in classification. This paper devises a new technique to classify the HSI named Spatial–Spectral Schroedinger Eigen Maps based Multi-scale adaptive sparse representation (S2SEMASR). In this, two different phases are employed for the accurate classification of the HSI, namely, Schroedinger Eigen maps (SE) based spatial–spectral feature extraction and multi-scale adaptive sparse classification for the feature extracted image. SE makes use of spatial–spectral cluster potentials which allows the extraction of features that best describes the characteristics of different classes of HSI. The multiscale adaptive sparse representation (MASR) applied over the SE features provides the sparse coefficients that includes distinct scale level sparsity with same class level sparsity. With the obtained coefficients, the class label of each pixel is determined. The proposed HSI classifier well utilizes the spectral and spatial characteristics to exploit the within-class variability and thus reduces the misclassification of similar test pixels Experimental results demonstrated that the proposed S2SEMASR approach outperforms the traditional results both qualitatively and quantitatively with an overall accuracy of 98.3%.  相似文献   

9.
Multiscale morphological segmentation of gray-scale images   总被引:17,自引:0,他引:17  
In this paper, the authors have proposed a method of segmenting gray level images using multiscale morphology. The approach resembles the watershed algorithm in the sense that the dark (respectively bright) features which are basically canyons (respectively mountains) on the surface topography of the gray level image are gradually filled (respectively clipped) using multiscale morphological closing (respectively opening) by reconstruction with isotropic structuring element. The algorithm detects valid segments at each scale using three criteria namely growing, merging and saturation. Segments extracted at various scales are integrated in the final result. The algorithm is composed of two passes preceded by a preprocessing step for simplifying small scale details of the image that might cause over-segmentation. In the first pass feature images at various scales are extracted and kept in respective level of morphological towers. In the second pass, potential features contributing to the formation of segments at various scales are detected. Finally the algorithm traces the contours of all such contributing features at various scales. The scheme after its implementation is executed on a set of test images (synthetic as well as real) and the results are compared with those of few other standard methods. A quantitative measure of performance is also formulated for comparing the methods.  相似文献   

10.
The feasibility of classifying different human activities based on micro-Doppler signatures is investigated. Measured data of 12 human subjects performing seven different activities are collected using a Doppler radar. The seven activities include running, walking, walking while holding a stick, crawling, boxing while moving forward, boxing while standing in place, and sitting still. Six features are extracted from the Doppler spectrogram. A support vector machine (SVM) is then trained using the measurement features to classify the activities. A multiclass classification is implemented using a decision-tree structure. Optimal parameters for the SVM are found through a fourfold cross-validation. The resulting classification accuracy is found to be more than 90%. The potentials of classifying human activities over extended time duration, through wall, and at oblique angles with respect to the radar are also investigated and discussed.  相似文献   

11.
This paper focuses on extracting and analyzing different spectral features from transrectal ultrasound (TRUS) images for prostate cancer recognition. First, the information about the images' frequency domain features and spatial domain features are combined using a Gabor filter and then integrated with the expert radiologist's information to identify the highly suspicious regions of interest (ROIs). The next stage of the proposed algorithm is to scan each identified region in order to generate the corresponding 1-D signal that represents each region. For each ROI, possible spectral feature sets are constructed using different new geometrical features extracted from the power spectrum density (PSD) of each region's signal. Next, a classifier-based algorithm for feature selection using particle swarm optimization (PSO) is adopted and used to select the optimal feature subset from the constructed feature sets. A new spectral feature set for the TRUS images using estimation of signal parameters via rotational invariance technique (ESPRIT) is also constructed, and its ability to represent tissue texture is compared to the PSD-based spectral feature sets using the support vector machines (SVMs) classifier. The accuracy obtained ranges from 72.2% to 94.4%, with the best accuracy achieved by the ESPRIT feature set.  相似文献   

12.
Automatic modulation classification is essential in radar emitter identification. We propose a cascade classifier by combining a support vector machine (SVM) and convolutional neural network (CNN), considering that noise might be taken as radar signals. First, the SVM distinguishes noise signals by the main ridge slice feature of signals. Second, the complex envelope features of the predicted radar signals are extracted and placed into a designed CNN, where a modulation classification task is performed. Simulation results show that the SVM-CNN can effectively distinguish radar signals from noise. The overall probability of successful recognition (PSR) of modulation is 98.52% at 20 dB and 82.27% at −2 dB with low computation costs. Furthermore, we found that the accuracy of intermediate frequency estimation significantly affects the PSR. This study shows the possibility of training a classifier using complex envelope features. What the proposed CNN has learned can be interpreted as an equivalent matched filter consisting of a series of small filters that can provide different responses determined by envelope features.  相似文献   

13.
针对低信噪比下雷达信号识别准确率较低的问题,提出了一种基于时频图像和高次频谱特征联合的雷达信号识别算法。该算法首先对信号采用Choi-Williams分布(Choi-Williams distribution,CWD)变换获取时频图像,接着对时频图预处理并用灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取纹理特征;然后利用对称Holder系数提取信号的高次频谱特征;再将纹理特征和高次频谱特征构成一组联合特征向量,最后通过支持向量机(support vector machine,SVM)实现雷达信号的分类识别。通过对8种典型雷达信号进行实验,结果表明本算法在信噪比为-8 dB时,不同信号的识别准确率能达到90%以上。  相似文献   

14.
15.
This paper describes a novel target recognition scheme using High Range Resolution (HRR) ra-dar signatures. AutoRegressive (AR) method is used to extract features from HRR radar echoes based on scattering center model of target. The optimal linear transformation based on Euclidian distribution distance criterion is performed on AR model parameter vectors to reduce dimension of feature vectors further and improve the class discrimination capability of feature vectors. The optimization algorithm is designed utiliz-ing the quadratic property of criterion function and Gaussian kernel based Parzen window density function estimator. The concept of Stochastic Information Gradient (SIG) is incorporated into the gradient of cost function to decrease the computational complexity of the algorithm. Simulation results using three real air-planes, data show the effectiveness of the proposed method.  相似文献   

16.
针对利用摄像机进行人体动作识别时易受视距和光线影响等问题,提出一种基于FMCW雷达的人体复杂动作识别方案。首先基于FMCW信号模型对雷达采样数据采用一种以RDM(Range Doppler Map)向速度维投影的方式逐帧构建微多普勒谱图,继而基于微多普勒谱图来提取用于表征整个动作频谱相关信息的8种特征矢量。最后,基于雷达实测数据,以贝叶斯超参数调整优化后的支持向量机作为分类器,分析利用所提取的单特征矢量以及特征矢量组合来进行分类时对分类准确率的影响,用以筛选最优异的特征矢量组合。实验结果表明,从微多普勒谱图中所提取的特征矢量皆可直观地表述整个动作过程的特性,且利用最终筛选得到的最优异的特征矢量组合对已知个体和未知个体的9种动作进行识别,识别准确率分别高达99.07%和96.76%。  相似文献   

17.
基于中心矩特征的空间目标识别方法   总被引:1,自引:0,他引:1  
目标的雷达散射截面(RCS)包含了丰富的目标类别信息,有效地利用目标RCS特征对空间目标的雷达识别具有重要的意义。该文利用空间目标回波的距离维信号来进行识别。中心矩特征具有平移不变性,是一种简单有效的波形特征提取算法。文中首先提取中心矩作为特征向量,再采用Fisher判据进一步进行特征压缩,最后利。用支撑矢量机(SVM)分类算法实现识别。基于实测数据的仿真实验结果表明,该方法具有较好的识别性能和推广能力。  相似文献   

18.
关世豪  杨桄  李豪  付严宇 《激光技术》2020,44(4):485-491
为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信息的光谱数据进行训练,提取空谱联合特征,最后使用Softmax损失函数训练分类器实现分类。3-D-CRNN模型无需对高光谱图像进行复杂的预处理和后处理,可以实现端到端的训练,并且能够充分提取空间与光谱数据中的语义信息。结果表明,与其它基于深度学习的分类方法相比,本文中的方法在Pavia University与Indian Pines数据集上分别取得了99.94%和98.81%的总体分类精度,有效地提高了高光谱图像的分类精度与分类效果。该方法对高光谱图像的特征提取具有一定的启发意义。  相似文献   

19.
基于多尺度自回归(MAR)图模型的稳健递归M估计(RME)算法,给出一种新的合成孔径雷达(SAR)图像稳健滤波方法.首先根据SAR图像不同尺度下的统计相依性,构造SAR图像的多尺度图像序列;然后对多尺度SAR图像序列构造树上MAR图模型,利用其的RME算法得到SAR图像的滤波.研究表明,该算法不仅具有有效的可计算性,而且利用不同分辨率下SAR图像信息融合,在不同情况下都能得到较好的滤波结果.实验结果表明,本文提出的方法是稳健的.  相似文献   

20.
王之腾  纪存孝  刘畅  董琳 《移动信息》2024,46(1):172-176
识别雷达信号的调制方式有助于分析雷达的工作模式和目的,为及时采取恰当的应对措施提供依据。长短时记忆网络(Long Short-Term Memory, LSTM)深度学习模型在基于特征的调制方式识别领域中有着广泛应用,但LSTM模型的时间性能会随着输入数据规模的增大而下降。针对以上问题,文中提出了一种基于注意力机制的双向长短时记忆网络(Bidirectional Long Short-Term Memory, BiLSTM)的雷达信号调制方式识别算法。该算法通过BiLSTM提取信号原始数据的特征,再使用注意力机制为学习到的特征分配相应权重,最后由分类器根据学习到的特征输出分类结果。使用Python框架构建基于注意力机制的BiLSTM网络模型,以雷达辐射源信号特征仿真数据作为网络的输入和训练基础,实现对辐射源的调制方式的识别。结果表明,该模型在识别雷达信号的调制方式方面具有良好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号