首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of B lymphocytes by Epstein-Barr virus (EBV) requires attachment of virus via binding of viral glycoprotein gp350 to CD21 on the cell surface. Penetration of the cell membrane additionally involves a complex of three glycoproteins, gH, gL, and gp42. Glycoprotein gp42 binds to HLA-DR. Interference with this interaction with a soluble form of gp42, with a monoclonal antibody (MAb) to gp42, or with a MAb to HLA-DR inhibited virus infection. It was not possible to superinfect cells that failed to express HLA-DR unless expression was restored by transfection or creation of hybrid cell lines with complementing deficiencies in expression of HLA class II. HLA class II molecules thus serve as cofactors for infection of human B cells.  相似文献   

2.
In the present report, cytotoxic T lymphocyte (CTL) clones are described that display dual specificity for one of two common human leukocyte antigens (HLA B14 or B35) as alloantigens, and an immunodominant epitope (FLRGRAYGL) from Epstein-Barr virus (EBV) that binds to HLA B8. These T cell clonotypes were isolated from several unrelated HLA B8+, EBV-exposed individuals, and each distinct cross-reactivity pattern was associated with a common, public T cell receptor (TCR). In some individuals, CTL cross-reactive with these alloantigens completely dominated the memory response to this EBV epitope. Moreover, these memory T cells to EBV could be reactivated as a significant component of the repertoire of CTL responding to allogeneic stimulator cells expressing either HLA B14 or B35. These data illustrate how a history of infection with an immunogenic virus such as EBV can augment responsiveness to particular alloantigens; such influences may underlie the observed clinical association between herpesvirus infection and both allograft rejection and graft-versus-host disease. We have also explored the molecular basis for T cell cross-reactivity with alloantigens using the HLA B35 allo-reactive CTL clonotype. To elucidate the structural features of peptides that may be cross-recognized by these T cells, mono-substituted analogs of the viral epitope were screened for recognition, revealing broad specificity for major histocompatibility complex (MHC)-bound peptide. Based on the particular amino acid changes tolerated by the CTL at each peptide position, the human protein sequence database was searched for possible sequences that were recognized in association with HLA B35. Four peptides were identified (MPEATVYGL, IPIAPVYGM, KPSPPYFGL, and KPIVVLHGY) that were powerful activating ligands for the CTL when presented on HLA B35 but not B8. Thus, equivalent epitopes, capable of fully activating a single TCR, were formed by peptides with minimal obvious sequence homology bound to either HLA B8 or B35. These data indicate that degenerate peptide recognition by TCR may play an important role in the vigorous response of self-MHC-restricted T cells to alloantigens.  相似文献   

3.
4.
5.
Two Epstein-Barr virus (EBV) gene products, latent infection membrane protein 1 (LMP1), expressed mainly in latent infection, and BHRF1, expressed in lytic infection, have the ability to promote cell survival. LMP1 protects human B cells from apoptosis by upregulating expression of Bcl-2 and A20. We have demonstrated that LMP1 transfectants of Jurkat T cells are resistant to apoptosis induced by serum depletion without affecting the Bcl-2/Bax system. Overexpression of LMP1 in epithelial cells inhibits apoptosis induced by TNF-alpha, but not by anti-Fas antibodies. These results indicate that the anti-apoptotic mechanism of LMP1 differs among different cell types. BHRF1 can prevent apoptosis induced by TNF-alpha and anti-Fas antibodies in epithelial cells. The implication of the anti-apoptotic function of LMP1 and BHRF1 is reviewed in relation to EBV infection.  相似文献   

6.
Posttransplant patients undergoing prolonged cyclosporine A (CsA) immunosuppressive therapy have been reported to have increased incidence of Epstein-Barr virus (EBV)-associated lymphoproliferative disorders. We undertook experiments to analyze the possible actions of CsA during EBV-infection of human peripheral blood mononuclear cells (PBMC). EBV-infected B cells cultured with CsA demonstrated increased EBV B-cell outgrowth as compared with those cultured without CsA. PBMC, after infection with EBV and CsA treatment, demonstrated increased interleukin-6 (IL-6) activity in the culture supernatant. The induction of IL-6 appears to differ within the various lymphocyte populations. In monocytes, IL-6 expression appears preferentially induced by EBV and is initiated by the binding of the two major virion glycoproteins, gp350 and gp220. Expression of IL-6 in T cells appears to be due mainly to CsA. B cells also express IL-6 after EBV exposure, but not after CsA treatment. EBV-immortalized B-cell lines cultured with CsA exhibited both an increased number of cells expressing viral lytic-cycle antigens and increased amounts of lytic-cycle proteins. IL-6, which is induced by CsA in PBMC, was also capable of inducing the lytic viral cycle in several EBV-immortalized cells. CsA, in promoting both increased numbers of lytic EBV B cells and an EBV paracrine factor, IL-6, within the microenvironment of EBV B cell:T cell and EBV B cell:monocyte interactions, may result in increased EBV B-cell immortalization and ultimately lead to the promotion of B-cell lymphomas in immunosuppressed patients.  相似文献   

7.
Although it is generally accepted that one of the first steps of herpesvirus egress is the acquisition of an envelope by nucleocapsids budding into the inner nuclear membrane, later events in the pathway are not well understood. We tested the hypothesis that the virus then undergoes de-envelopment, followed by reenvelopment at membranes outside the endoplasmic reticulum (ER), by constructing a recombinant virus in which the expression of an essential glycoprotein, gH, is restricted to the inner nuclear membrane-ER by means of the ER retention motif, KKXX. This targeting signal conferred the predicted ER localization properties on gH in recombinant virus-infected cells, and gH and gL polypeptides failed to become processed to their mature forms. Cells infected with the recombinant virus released particles with 100-fold less infectivity than those released by cells infected with the wild-type parent virus, yet the number of enveloped virus particles released into the medium was unaltered. These particles contained normal amounts of gD and VP16 but did not contain detectable amounts of gH, and these data are consistent with a model of virus exit whereby naked nucleocapsids in the cytoplasm acquire their final envelope from a subcellular compartment other than the ER-inner nuclear membrane.  相似文献   

8.
Noninfectious Pr55gag virus-like particles containing high quantities of oligomeric human immunodeficiency virus type 1 (HIV-1) envelope (Env) proteins represent potential candidate immunogens for a vaccine against HIV-1 infection. Thus, chimeric env genes were constructed encoding the HIV-1 exterior glycoprotein gp120 which was covalently linked at different C-terminal positions to a transmembrane domain (TM) from the Epstein-Barr virus (EBV) major Env glycoprotein gp220/ 350. All chimeric Env-TM polypeptides as well as the wild-type HIV Env proteins were equally produced and incorporated at the outer surface of insect cells using the baculovirus expression system. In the presence of coexpressed HIV Pr55gag polyproteins significantly decreased amounts of wild-type Env proteins were presented at the cell surface, whereas the membrane incorporation of the Env-TM chimeras was not affected. Biochemical and immunoelectron microscopical analysis of particles that were efficiently released from these cells displayed the incorporation of both wild-type Env and chimeric Env-TM proteins on the surface of VLPs. However, the quantities of particle-associated chimeric Env-TM proteins exceeded those of incorporated wild-type Env proteins by a factor of 5-10. Chemical cross-linking and subsequent polyacrylamide gel electrophoresis of VLP-entrapped Env proteins revealed that the chimeric Env-TM proteins form homodimers and a higher-order oligomer, similar to that observed for wild-type Env proteins. Thus, the results of this study clearly demonstrate that the replacement of the gp41 transmembrane protein of gp160 by a heterologous, EBV gp220/350-derived membrane anchor provides an effective strategy to incorporate high quantities of oligomeric HIV gp120 proteins on the surface of Pr55gag virus-like particles.  相似文献   

9.
We have characterized the restriction mechanism for RD114 virus replication in embryonic feline cells (FeF). By comparing growth properties of the virus in FeF cells with its behavior in a fetal feline glial cell line (G355) permissive for RD114, we showed that both cell lines were readily infectible by virus grown in permissive cells and that no significant differences in viral integration or viral RNA expression could be detected. However, analysis of viral protein expression revealed differences in viral env gene processing in the two cell types. Envelope precursor pR85 was produced, but the expected processed gp70 product was detectable only in permissive (G355) cells. An envelope product of 85 kDa was packaged into virions produced by FeF cells, while virions produced by G355 cells contained the expected RD114 gp70. While the gp85 env-containing virions were infectious for permissive G355 cells, they were unable to infect FeF cells. The block to infection by the gp85-containing particles in FeF cells could be abrogated by treatment with the glycosylation inhibitor tunicamycin. Our results indicate that restriction of RD114 virus involves a novel mechanism dependent on two factors: altered glycosylation of the envelope to a gp85 form and an altered RD114 receptor in FeF cells.  相似文献   

10.
Epstein-Barr virus (EBV) infects both B lymphocytes and squamous epithelial cells in vitro, but the cell type(s) required to establish primary and persistent infection in vivo has not been definitively elucidated. The aim of this study was to investigate a group of individuals who lack mature B lymphocytes due to the rare heritable disorder X-linked agammaglobulinemia in order to determine the role of the B cell in the infection process. The results show that none of these individuals harbored EBV in their blood or throat washings. Furthermore, no EBV-specific memory cytotoxic T lymphocytes were found, suggesting that they had not undergone infection in the past. In contrast, 50% of individuals were found to carry human herpesvirus 6, showing that they are infectible by another lymphotropic herpesvirus. These results add weight to the theory that B lymphocytes, and not oropharyngeal epithelial cells, may be required for primary infection with EBV.  相似文献   

11.
Glycoprotein gp150 is a highly glycosylated protein encoded by the BDLF3 open reading frame of Epstein-Barr virus (EBV). It does not have a homolog in the alpha- and betaherpesviruses, and its function is not known. To determine whether the protein is essential for replication of EBV in vitro, a recombinant virus which lacked its expression was made. The recombinant virus had no defects in assembly, egress, binding, or infectivity for B cells or epithelial cells. Infection of epithelial cells was, however, enhanced. The glycoprotein was sensitive to digestion with a glycoprotease that digests sialomucins, but no adhesion to cells that express selectins that bind to sialomucin ligands could be detected.  相似文献   

12.
An amino acid substitution (D --> K) in the C3 region of HIV-1 gp120 has previously been shown to inhibit binding of virions to CD4+ cells. We have introduced the same mutation into the HIV-1 isolate LAV-I(BRU), in which the mutation is denoted D373K. Here we show that the D373K envelope protein is processed and incorporated into virus particles, but that D373K virions have no detectable infectivity (below 0.1% relative to wild type). When D373K and the wild-type envelope gene were cotransfected in 293 cells at a 4:1 ratio, the resultant infectivity of the HIV-1 supernatant was reduced more than 100-fold. When the same ratio of plasmids was tested in COS-1 cells the inhibition of HIV-1 was an order of magnitude less than observed in 293 cells. COS-1 and 293 cells differed in that only 293 cells displayed saturation of virus production with respect to the envelope protein. Our data fit a simple model: when virion formation is saturated with envelope protein, expression and incorporation of a defective envelope protein imply a corresponding dilution of wild-type protein on the surface of virions. The cooperative function of wild-type envelope proteins is subsequently compromised, and a trans-dominant inhibition of virus infectivity is observed.  相似文献   

13.
Epstein-Barr virus (EBV) is invariably present in undifferentiated nasopharyngeal carcinomas, is found sporadically in other carcinomas, and replicates in the differentiated layer of the tongue epithelium in lesions of oral hairy leukoplakia. However, it is not clear how frequently or by what mechanism EBV infects epithelial cells normally. Here, we report that a human epithelial cell line, 293, can be stably infected by EBV that has been genetically marked with a selectable gene. We show that 293 cells express a relatively low level of CD21, that binding of fluorescein-labeled EBV to 293 cells can be detected, and that both the binding of virus to cells and infection can be blocked with antibodies specific for CD21. Two proteins known to form complexes with CD21 on the surface of lymphoid cells, CD35 and CD19, could not be detected at the surface of 293 cells. All infected clones of 293 cells exhibited tight latency with a pattern of gene expression similar to that of type II latency, but productive EBV replication and release of infectious virus could be induced inefficiently by forced expression of the lytic transactivators, R and Z. Low levels of mRNA specific for the transforming membrane protein of EBV, LMP-1, as well as for LMP-2, were detected; however, LMP-1 protein was either undetectable or near the limit of detection at less than 5% of the level typical of EBV-transformed B cells. A slight increase in expression of the receptor for epidermal growth factor, which can be induced in epithelial cells by LMP-1, was detected at the cell surface with two EBV-infected 293 cell clones. These results show that low levels of surface CD21 can support infection of an epithelial cell line by EBV. The results also raise the possibility that in a normal infection of epithelial cells by EBV, the LMP-1 protein is not expressed at levels that are high enough to be oncogenic and that there might be differences in the cells of EBV-associated epithelial cancers that have arisen to allow for elevated expression of LMP-1.  相似文献   

14.
The human cytomegalovirus (HCMV) gCIII envelope complex is composed of glycoprotein H (gH; gpUL75), glycoprotein L (gL; gpUL115), and a third, 125-kDa protein not related to gH or gL (M. T. Huber and T. Compton, J. Virol. 71:5391-5398, 1997; L. Li, J. A. Nelson, and W. J. Britt, J. Virol. 71:3090-3097, 1997). Glycosidase digestion analysis demonstrated that the 125-kDa protein was a glycoprotein containing ca. 60 kDa of N-linked oligosaccharides on a peptide backbone of 65 kDa or less. Based on these biochemical characteristics, two HCMV open reading frames, UL74 and TRL/IRL12, were identified as candidate genes for the 125-kDa glycoprotein. To identify the gene encoding the 125-kDa glycoprotein, we purified the gCIII complex, separated the components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and subjected gH and the 125-kDa glycoprotein to amino acid microsequence analysis. Microsequencing of an internal peptide derived from purified 125-kDa glycoprotein yielded the amino acid sequence LYVGPTK. A FASTA search revealed an exact match of this sequence to amino acids 188 to 195 of the predicted product of the candidate gene UL74, which we have designated glycoprotein O (gO). Anti-gO antibodies reacted in immunoblots with a protein species migrating at ca. 100 to 125 kDa in lysates of HCMV-infected cells and with 100- and 125-kDa protein species in purified virions. Anti-gO antibodies also immunoprecipitated the gCIII complex and recognized the 125-kDa glycoprotein component of the gCIII complex. Positional homologs of the UL74 gene were found in other betaherpesviruses, and comparisons of the predicted products of the UL74 homolog genes demonstrated a number of conserved biochemical features.  相似文献   

15.
Pediatric allograft recipients in particular are at increased risk for Epstein-Barr virus (EBV)-associated disorders. Early identification and diagnosis of EBV-associated disorders is critical, since disease progression can often be halted by reduction of immunosuppression. In this study we examined viral and immunologic parameters of EBV infection in the circulation of pediatric liver recipients to identify factors associated with disease. Peripheral blood DNA from pediatric liver recipients was analyzed by PCR for the EBV genes coding for the nuclear antigen 1 (EBNA-1) and the viral capsid antigen gp220. Sequences for these viral genes could be readily detected in the circulation of 36.5% of patients. Moreover, identification of the EBV genome was associated with symptomatic infection, suggesting that circulating EBV may be a useful marker of disease. Since EBV-infected B cells release the low-affinity IgE receptor (sCD23), we measured sCD23 in the circulation of pediatric liver recipients and found it to be elevated in patients with detectable virus or symptoms of infection. However, sCD23 was also elevated in cases where no EBV was detectable, suggesting that factors other than viral infection could stimulate release of sCD23. To further characterize the immune response to EBV infection, the peripheral levels of IL-4, IL-5, IL-10, and IFN-gamma were determined in pediatric liver recipients. Each of these cytokines was elevated in patients with symptoms or circulating virus compared with stable, age-matched liver recipients. IL-4, in particular, was significantly increased, indicating an important role for this cytokine in EBV infection. Together, these findings suggest that (1) monitoring circulating levels of EBV may be useful in patients at high risk and (2) cytokines that promote B cell growth and differentiation contribute to EBV-associated disorders.  相似文献   

16.
We described previously a novel mode of gene transfer by infection of human B lymphocytes with recombinant Epstein-Barr virus (EBV) amplicons. This system was explored for its potential use in expressing various recombinant genes, including the cytokine IL-4, the HIV envelope glycoprotein (gp120) and a suicide and gag gene. Recombinant genes were present as multiple copy episomes and stable, high level recombinant gene expression could be detected by antigenic and functional assays. Amplicon-infected B cells secreted high levels of recombinant cytokine and efficiently presented recombinant antigens through classes I and II MHC-restricted antigen processing pathways. Thus, recombinant EBV amplicons can be used to express components of the immune system or heterologous genes for immune recognition in human B cells. Combining gene transfer with EBV infection may provide unique advantages for in vitro and in vivo gene transfer.  相似文献   

17.
The structure, formation, and function of the virion membranes are among the least well understood aspects of vaccinia virus replication. In this study, we investigated the role of gp42, a glycoprotein component of the extracellular enveloped form of vaccinia virus (EEV) encoded by the B5R gene. The B5R gene was deleted by homologous recombination from vaccinia virus strains IHD-J and WR, which produce high and low levels of EEV, respectively. Isolation of recombinant viruses was facilitated by the insertion into the genome of a cassette containing the Escherichia coli gpt and lacZ genes flanked by the ends of the B5R gene to provide simultaneous antibiotic selection and color screening. Deletion mutant viruses of both strains formed tiny plaques, and those of the IHD-J mutant lacked the characteristic comet shape caused by release of EEV. Nevertheless, similar yields of intracellular infectious virus were obtained whether cells were infected with the B5R deletion mutants or their parental strains. In the case of IHD-J, however, this deletion severely reduced the amount of infectious extracellular virus. Metabolic labeling studies demonstrated that the low extracellular infectivity corresponded with a decrease in EEV particles in the medium. Electron microscopic examination revealed that mature intracellular naked virions (INV) were present in cells infected with mutant virus, but neither membrane-wrapped INV nor significant amounts of plasma membrane-associated virus were observed. Syncytium formation, which occurs in cells infected with wild-type WR and IHD-J virus after brief low-pH treatment, did not occur in cells infected with the B5R deletion mutants. By contrast, syncytium formation induced by antibody to the viral hemagglutinin occurred, suggesting that different mechanisms are involved. When assayed by intracranial injection into weanling mice, both IHD-J and WR mutant viruses were found to be significantly attenuated. These findings demonstrate that the 42-kDa glycoprotein of the EEV is required for efficient membrane enwrapment of INV, externalization of the virus, and transmission and that gp42 contributes to viral virulence in strains producing both low and high levels of EEV.  相似文献   

18.
Interleukin-11     
Interleukin-11 (IL-11) is an IL-6-type cytokine that is produced by a variety of stromal cells including fibroblasts, epithelial cells and osteoblasts. It binds to a multimeric receptor complex which contains an IL-11-specific alpha subunit and a promiscuous 130 kDa beta subunit (gp130). IL-11 stimulates multiple aspects of hematopoiesis and hepatocyte production of acute phase response proteins. It also inhibits the genesis of adipocytes, activates osteoclasts, alters neural phenotype, stimulates tissue fibrosis and regulates chondrocyte, synoviocyte and B cell function. In other settings, IL-11 minimizes tissue injury. This may be the result of its ability to protect clonogenic stem cells, regulate epithelial cell proliferation, inhibit apoptosis and inhibit macrophage cytokine production. Thus, IL-11 appears to play an important role in hematopoiesis, bone metabolism and tissue remodeling and may be an important protector of mucosal surfaces.  相似文献   

19.
The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.  相似文献   

20.
Members of the Immunoglobulin Superfamily (Ig) present in the surface of rodent mast cells include the high affinity IgE receptor (Fc epsilon RI), the low affinity receptors for the Fc portion of IgG, the Fc gamma RII family and Fc gamma RIII as well as the recently cloned gp49 family that includes three members gp49A, gp49B1 and gp49B2. Fc epsilon RI and Fc gamma RIII are members of the multi-chain immune recognition receptor (MIRR) family since they possess a multimeric structure in which the signal transducing chains (gamma chains) contain six acids that conform the Antigen Homology Receptor 1 Motif (ARH1M), also present in the T cell receptor (TCR) transducing chains. gp49B1, gp49B2 and the FC gamma R family are monomeric chains that also contain the partial of full AHR1M motif in their cytoplasmic domain indicating the capability for signal transduction through tyrosine phosphorylation and the possibility of cell activation with mediator (s) or cytokine (s) release. Distribution of the Fc gamma R receptors and gp49 family members varies in the different stages of mast cell differentiation and maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号