首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
王芳  吴涛  袁炜 《广东化工》2012,39(13):58-59
文章较系统的综述了国内外增强树脂用玻璃纤维表面处理的方法,包括用偶联剂处理、等离子体表面处理、在玻璃纤维的表面接枝处理以及其它处理方法。对各种改性技术的特点进行了评述。并指出了其进一步的发展趋势。  相似文献   

2.
采用等离子体法对玻璃纤维(玻纤)增强PP进行了表面处理,确定了最佳处理条件,对处理后的试样表面的物理,化学变化进行了详细的研究,分析了表面处理后结力增大的主要原因,对玻纤增强PP的涂饰工艺具有指导意义。  相似文献   

3.
通过大气压等离子体射流在玻璃纤维(GF)表面沉积氧化硅(SiOx)纳米颗粒的方法改善玻璃纤维增强聚丙烯(GFRP)复合材料的界面结合性能,利用扫描电子显微镜、原子力显微镜和X射线光电子能谱等表征分析了改性纤维的表面形貌、化学成分、润湿性能和复合材料的界面结合性能,并考察了等离子体射流载气流量大小对GF改性效果的影响。结果表明,当载气流量为40 mL/min时,GF的改性效果最好,且此时GF的表面能相比对照组提高了43.18 %,GFRP复合材料的层间剪切强度提高了30.79 %;经过等离子体处理后,GF的表面粗糙度增大,极性官能团增多,复合材料的界面结合性能提升。  相似文献   

4.
从玻璃纤维表面处理的机理出发,简述了玻璃纤维表面处理的工艺和配方特点,以及表面处理发展状况,对玻璃纤维表面处理技术提出了更高的要求。  相似文献   

5.
为了制备得到性能优异的疏水SiO_2气凝胶复合材料,以O_2等离子体处理的玻璃纤维作为增强相,结合溶胶-凝胶法和超临界CO_2干燥工艺制备SiO_2气凝胶复合材料并对复合材料的结构、表面基团、疏水性、热稳定性以及绝热、力学性能进行表征。结果一方面表明O_2等离子体处理改善了玻璃纤维与SiO_2气凝胶的结合能力,使复合材料具有更加优异的绝热性能和力学性能;另一方面表明疏水改性后的O_2等离子体处理玻璃纤维增强的SiO_2气凝胶复合材料在MTMS与TEOS比例为0.4∶1时,具有低密度(0.228 g/cm~3)、低导热率(0.0214 W/m·K)、高孔隙率(80.0%)、高比表面积(741.66 m~2·g~(-1))、高疏水角(129.2°)以及高抗压强度(σ_(20%)=152.88 kPa)的特点。这些优异的性能促进了O_2等离子体处理玻璃纤维增强的SiO_2气凝胶复合材料在绝热领域更加广泛的应用。  相似文献   

6.
等离子体处理在玻璃纤维增强聚丙烯复合材料中的应用   总被引:14,自引:0,他引:14  
采用连续玻璃纤维,以聚丙烯为基体树脂制备新型复合材料,研究了化学偶联剂处理等离子体处理对材料力学性能和耐湿热稳定性能的影响。研究表明,对玻璃纤维进行等离子体处理后再用化学偶联剂A-1100进行处理,同时对聚丙烯进行氧等离子体处理可以有效改善材料的界面结合状况,大幅度提高材料的力学性能和耐湿热稳定性能。  相似文献   

7.
主要介绍了GF/PP复合材料的界面改性方法,玻璃纤维的表面处理和树脂基体改性。其中,玻璃纤维的表面处理包括偶联剂处理、浸润剂处理、等离子处理以及玻璃纤维的表面接枝。  相似文献   

8.
概述了玻璃纤维增强不饱和树脂基复合材料(GFRP)疏水处理的必要性,研究了疏水处理的几种方法:添加氟化碳粒子、等离子体处理、在材料表面引入全氟烷基丙烯酸酯类物质,阐述了疏水处理的主要原理和复合材料疏水性能表征方法,简述复合材料疏水研究的发展趋势。  相似文献   

9.
浅谈玻璃纤维表面处理用热源及加热方式   总被引:2,自引:0,他引:2  
对玻璃纤维进行表面处理是提高玻璃纤维性能,拓展应用领域的一种重要技术途径。论及的玻璃纤维表面处理指玻璃纤维热处理和表面化学处理,二者均需耗费能源。热源和加热方式的选择不但影响玻璃纤维表面处理产品性能质量,而且直接影响到生产成本。  相似文献   

10.
谢常庆 《河北化工》2014,(9):18-20,28
玻璃纤维表面处理是获得优良性能的玻璃纤维复合材料的关键技术,从增强聚合物基复合材料的角度,综述了玻璃纤维表面处理的研究情况,提出了研究中亟待解决的问题,认为开发大分子偶联剂以及表面二次接枝处理是表面处理技术未来的发展方向。  相似文献   

11.
增强树脂用玻璃纤维的表面处理方法及其对界面的影响   总被引:19,自引:1,他引:19  
杨俊  蔡力锋  林志勇 《塑料》2004,33(1):5-8
综述了国内外增强树脂用玻璃纤维表面处理的方法,包括用硅烷偶联剂、铝酸酯偶联剂、含过氧化物基团的偶联剂以及和其它助剂联用处理,在玻璃纤维的表面接枝上含某种基团的小分子或大分子以及其它处理方法。通过对玻璃纤维的表面处理,提高了玻璃纤维与树脂基体的界面粘接力,获得良好的界面层,达到对界面的优化处理。  相似文献   

12.
为了改善玻璃钢的性能,必须对玻璃纤维进行“表面处理”。表面处理方法之一是“热化学处理”。处理的第一步是将玻璃纤维制品表面石蜡型浸润剂除去,目前国内主要采用“热烧法”。由于浸润剂部份组分在玻璃纤维上的不均匀分布,使它们在热烧过程中不能完全烧掉,于是在玻璃布表面残留下了褐色“条痕”,绝缘材料厂用这种带条  相似文献   

13.
王琛  陈杰瑢  杨靖  刘小冲 《现代化工》2004,24(12):20-22
运用等离子体聚合或表面处理技术改变载体材料的表面性质,进而固定酶蛋白的方法主要有4类:等离子体表面处理、等离子体聚合、等离子体接枝共聚和等离子体化学气相沉积。综述了近年来用等离子体优化修饰技术处理载体材料进行固定化酶研究的新进展,指出今后应加强等离子体体系表面改性规律及机理、等离子体单体气体种类、放电条件及底衬材料等方面的研究。  相似文献   

14.
介绍了等离子体气体种类和处理参数对超高相对分子质量聚乙烯(UHMWPE)纤维表面性能的影响,阐述了等离子体处理UHMWPE纤维的表征方法,包括黏结性和表面基团变化的表征,探究了等离子体改善纤维表面性能的机制,概括了对等离子体处理时效性和连续性问题的研究。  相似文献   

15.
采用空气气氛的射流等离子体对木粉/聚乙烯复合材料进行表面处理,以改善胶接性能。利用接触角和胶接强度测试以及红外光谱和X-射线光电子能谱分析等方法,研究了表面打磨对复合材料等离子体表面处理时效性的影响。研究结果表明,直接等离子体处理以及打磨后再等离子体处理都可以明显提高复合材料的胶接强度,相比之下,打磨后再等离子体处理可以在复合材料表面形成更多的含氧极性基团,有利于胶接性能的改善。木粉/聚乙烯复合材料的等离子体表面处理存在一定的时效性,与直接等离子体处理的复合材料相比,随着处理试样放置时间的延长,先打磨再等离子体处理的复合材料表面接触角、含氧极性基团以及胶接强度的变化幅度更小,表现出更小的处理时效性。尽管存在处理时效性,但等离子体处理后的胶接强度仍远好于未处理的试样。  相似文献   

16.
难粘高分子材料的等离子体表面处理研究进展   总被引:1,自引:0,他引:1  
刘杨  陶岩  吕新颖  邸明伟 《粘接》2010,31(4):70-74
简要介绍了等离子体表面处理技术的作用原理、分类及特点,综述了等离子体表面处理技术在难粘高分子材料聚乙烯、聚丙烯和聚四氟乙烯的薄膜、纤维以及片材的表面改性中的研究进展,并对等离子体表面处理技术在表面改性研究中的应用及前景做了展望。  相似文献   

17.
利用射流等离子体放电对聚乙烯木塑复合材料进行表面处理以改善其胶接性能。采用接触角测试、FTIR和胶接强度测试等方法,研究了不同等离子体处理工艺对等离子体处理后材料表面时效性的影响。研究结果表明,等离子体处理后的聚乙烯木塑复合材料,随着放置时间的延长,表面接触角和表面极性基团会发生变化,表现出处理时效性。不同工艺的等离子体处理,其处理时效性各不相同;相比之下,机械打磨后再进行等离子体处理的试样处理时效性最小。尽管存在处理时效性,但经射流等离子体处理后的木塑复合材试样放置7d后,仍表现出远大于未处理试样的胶接强度。  相似文献   

18.
为改善聚丙烯基木塑复合材料表面与涂料之间的附着效果,利用等离子体处理技术,对其表面进行处理。采用接触角测试、傅立叶变换红外光谱分析(FTIR)以及X射线光电子能谱分析(XPS)对处理前后复合材料表面的性能变化进行了分析,同时采用自动附着力测试仪对等离子体处理后复合材料表面与丙烯酸聚氨酯水性漆的附着效果进行了测试。研究结果表明,经等离子体处理后,聚丙烯基木塑复合材料的表面接触角减小,表面润湿性得到改善,表面有-OH、-C=O和-O-C=O等新官能团生成;XPS分析表明,经等离子体处理后,材料表面氧含量增加。漆膜附着力测试表明,等离子体处理后材料表面与丙烯酸聚氨酯水性漆的漆膜附着力有显著提高。  相似文献   

19.
等离子体处理技术已经广泛的应用于各种表面处理领域,但在碳纤维树脂复合材料表面处理方面研究却很少。文中介绍了等离子体处理技术在高分子有机材料方面的应用现状,以及处理后材料表面润湿性、表面形貌、化学成分和粘结性等方面的影响。研究分析等离子体处理技术在碳纤维复合材料上的应用前景。  相似文献   

20.
为了进一步发展玻功纤维工业,不仅要致力于玻功纤维生产技术的研究,而且要大力发已推进玻璃纤维多样化用途的有关技术,表面处理技术的研究是现实而简捷的办法。玻璃纤维的表面处理可以分为消极的表面处理和积极的表面处理。所谓消极的表面处理是指经过处理的纤维的性能不超过新生  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号