首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 68 毫秒
1.
为了解决人脸识别应用中针对人脸姿态的变化,光照等外部环境变化导致识别率不高,且稀疏表示应用于人脸识别收敛速度慢的情况,提出了一种基于多分量的Gabor特征提取和自适应权重选择的协同表示人脸识别算法(GAW-CRC).特征提取阶段,将Gabor变换的所有特征分量中鉴别能力较差的分量淘汰,剩余分量构建特征字典,分别协同表示对应测试样本的特征分量,将所有剩余分量的识别结果,按照自适应的权重函数加权融合得出最终分类结果.实验证明:算法应用于AR,FERET与Extended Yale B人脸库中,当对应的样本存在人脸角度变化,表情变化和光照条件变化等情况时,能够得到更高的识别率.  相似文献   

2.
为提高协同表示模型的特征表达能力和鲁棒性,解决对正则参数敏感的问题,提出加权协同表示分类器(WCRC)并运用于人脸识别。基于L2范数求解最优化问题,利用训练样本的先验距离信息作为权重,将待识别图像与每类样本的距离信息作为先验信息引入到特征表示函数中,增强距离待识别样本较近的某类样本的重构权重,利用最小二乘法求解表示系数,根据待识别图像与每类训练图像的重构残差大小判断待识别图像的类别。通过实验测试以及与其它算法的对比验证了该方法的有效性。  相似文献   

3.
受启发于人脸近似对称的先验知识,提出一种基于对称Gabor特征的稀疏表示算法并成功运用于人脸识别。首先把人脸图像进行镜像变换得到其镜像图像,进而将人脸分解为奇偶对称脸。在奇偶对称脸上分别提取Gabor特征,得到Gabor奇偶对称特征。通过一个加权因子,将奇偶特征融合生成新的特征。最后用这种新的特征构成超完备字典进行稀疏表示人脸分类。在人脸数据库AR和FERET上的实验结果表明所提算法在人脸有表情、姿势和光照变化情况下仍能获得较高的识别率。  相似文献   

4.
受启发于人脸近似对称的先验知识,提出一种基于对称Gabor特征的稀疏表示算法并成功运用于人脸识别。首先把人脸图像进行镜像变换得到其镜像图像,进而将人脸分解为奇偶对称脸。在奇偶对称脸上分别提取Gabor特征,得到Gabor奇偶对称特征。通过一个加权因子,将奇偶特征融合生成新的特征。最后用这种新的特征构成超完备字典进行稀疏表示人脸分类。在人脸数据库AR和FERET上的实验结果表明所提算法在人脸有表情、姿势和光照变化情况下仍能获得较高的识别率。  相似文献   

5.
为了提高人脸的识别率及其识别速度,提出了一种基于Gabor特征与投影字典对学习的人脸识别算法。由于Gabor特征对表情、光照和角度等变化具有较强的鲁棒性,首先提取人脸图像多方向多尺度的Gabor局部特征,并将经主成分分析降维后的增广Gabor特征作为训练数据,代替原始的训练样本。然后,根据训练数据同时学习综合字典与分析字典,综合字典具有重构能力,分析字典可以快速求出系数矩阵。最后,根据各类别的重构误差进行分类,以达到人脸识别的目的。在扩展的YaleB、ORL和AR人脸数据库上的实验结果表明,提出的算法不仅具有较高的识别率,而且能够有效地提高识别速度。  相似文献   

6.
基于Gabor滤波器的快速人脸识别算法   总被引:1,自引:0,他引:1  
孔锐  韩佶轩 《计算机应用》2012,32(4):1130-1132
针对传统人脸识别方法中所提取特征维数高、计算量大等缺点,提出一种新的正面人脸识别算法。新算法融合了半边人脸识别方法、Gabor滤波器、基于互信息判据的Gabor特征筛选来进行人脸识别。新算法将人脸图像分为左右两个部分,计算并比较人脸图像左右半边脸的熵,选取熵值较大的半边人脸图像进行Gabor特征提取。利用二值分类器判别单个Gabor特征的分类能力,选取分类能力较强的特征(最具判决力的特征)。再利用互信息判据对Gabor特征进行第二次筛选,以减小特征之间的冗余度。最后利用最近邻判别器来进行人脸识别。实验结果表明,新算法的识别率优于传统半边脸识别方法,识别速度也优于传统的利用Gabor滤波器进行特征提取的方法。  相似文献   

7.
针对Gabor特征维数高难题,提高光照人脸的识别性能,提出一种基于Gabor特征融合和最小二支持向量机的人脸识别算法(Gabor-LSSVM)。首先采用Gabor滤波器提取人脸图像的多尺度和多方向特征,并将相同尺度不同方向的特征融合,初步降低特征维数;然后采用核主成分分析对融合特征进行选择,进一步降低特征维数;最后采用最小支持向量机建立分类器对人脸进行识别,并采用Yale B和PIE人脸库进行仿真测试。结果表明Gabor-LSSVM的人脸识别正确率和识别效率都得到了提高。  相似文献   

8.
目前的人脸识别算法常常忽视训练过程中噪声的影响,特别是在训练数据和待测数据都受到噪声污染的情况下,识别性能会明显下降。针对含有光照变化、伪装、遮挡及表情变化等较大噪声的人脸识别问题,提出了一种基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法。该算法首先通过低秩矩阵恢复算法得到训练样本的潜在低秩结构和稀疏误差结构;然后利用主成分分析法找到低秩结构的Gabor特征所在低秩子空间的变换矩阵;再通过变换矩阵将所有样本的Gabor特征向量投影到低秩子空间上,在该低秩子空间上使用稀疏表示分类算法进行最终的分类识别。在Extend Yale B和AR数据库上的实验表明,新算法具有较高的识别率和较强的抗干扰能力。  相似文献   

9.
在人脸识别中,为了进一步提高人脸图像对光照等外界因素的鲁棒性,提出一种基于HOG特征的加权稀疏表示算法,将加权稀疏表示方法和HOG特征以及随机投影方法相融合,以降低复杂度,提高识别性能。首先,统计每一幅图像的方向梯度直方图(HOG)特征,并对每一幅图像进行归一化处理,削弱人脸图像中的光照影响;其次,对归一化后的图像引入随机矩阵算法,进行多次随机投影,得到每个样本所对应的稀疏系数,利用样本之间的距离作为稀疏系数的权值;在此基础上,对传统稀疏表示分类器进行改进,样本经随机矩阵多次投影和稀疏表示后会产生多个重构残差,最后利用样本的重构残差和对样本进行识别分类。ORL人脸库和GT人脸数据库上的实验证明该方法对光照等外界物理因素有着很好的鲁棒性。  相似文献   

10.
稀疏编码中的字典学习在稀疏表示的图像识别中扮演着重要的作用。由于Gabor特征对表情、光照和姿态等变化具有一定的鲁棒性,提出一种基于Gabor特征和支持向量引导字典学习(GSVGDL)的稀疏表示人脸识别算法。先提取图像的Gabor特征,然后用增广Gabor特征矩阵来构造初始字典。字典学习模型中综合了重构误差项、判别项和正则化项,判别项公式化定义为所有编码向量对平方距离的加权总和;通过字典学习同时得到字典原子与类别标签相对应的结构化字典和线性分类器。该字典学习方法能够自适应地为不同的编码向量对分配不同的权值,提高了字典的判别性能。实验结果表明该方法具有很好的识别精度和较高的识别效率。  相似文献   

11.
为了从Gabor滤波后的幅值图中提取更加有效的分类特征,提出了一种新的基于Gabor定向模式(GDP)的人脸识别方法。首先对人脸图像进行多尺度多方向的Gabor滤波,然后提出了一种新的GDP算子通过对每种尺度下所有方向的Gabor幅度图进行编码得到每种尺度对应的GDP模式图,最后将所有GDP模式图的直方图向量串联作为最终的人脸表示。由于GDP算子同时对同一尺度下的所有方向上的Gabor幅度响应进行编码,因而GDP特征不仅对外界变化具有较好的鲁棒性,而且能够显著降低最终的特征长度。在ORL和CAS-PEAL人脸库上的实验结果显示GDP方法能以更小的特征长度获得优于传统LGBP及LGXP等方法的识别效果,证明了方法的有效性。  相似文献   

12.
经典的稀疏表示分类(Sparse Representation for Classification,SRC)算法是一种基于[L1]范数最小化问题,它在很多应用场合都能取得很好的分类效果,是目前备受关注的一类识别算法。然而,传统的SRC算法在求解[L1]范数最小化问题时,往往计算效率比较低。为有效解决这个问题,提出了一种快速有效的分类算法,它利用坐标下降方法来实现SRC算法。该方法既可以显著地提高计算效率,又可取得较好的分类结果。在不同人脸库上的实验表明,所提的算法具有良好的应用前景。  相似文献   

13.
基于稀疏表示的人脸识别研究,非线性特征的选择研究较少。提出分层使用人脸图像的小波特征,进行稀疏表示人脸识别框架。框架首先对样本人脸进行小波变换,构造小波低频和小波高频过完备人脸字典;识别阶段首先使用人脸图像的小波低频特征进行稀疏表示,计算类别模糊稀疏,然后根据模糊系数输出类别标签或进行高频特征的稀疏表示与识别。实验结果表明,基于小波特征和稀疏表示的人脸识别分层框架提高了识别的准确率,且对遮挡很鲁棒。  相似文献   

14.
提出了一种基于Gabor特征和深度信念网络(DBN)的人脸识别方法,通过提取Gabor人脸图像的不同尺度图进行卷积融合,将融合后的特征图作为DBN的输入数据,训练多层来获得更加抽象的特征表达,整个训练的过程中采用交差熵来微调DBN,模型的最顶层结合Softmax回归分类器对抽取后的特征进行分类.在AR人脸库测试的实验结果表明:将Gabor特征与DBN结合应用于人脸识别,其准确率可高达92.7%,与其他浅层学习模型相比,DBN学习了数据的高层特征的同时还降低了特征维数,提高了分类器的分类精度,最终有效改善了人脸识别率.  相似文献   

15.
改进Gabor加权分析方法在人脸识别中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高Gabor对人脸结构特征和内容信息的保留能力,解决人脸识别中对表情等抗噪性差的缺点,提出一种基于改进Gabor加权分析的人脸识别算法。该方法通过对归一化的人脸进行多尺度Gabor分析,并依据相同滤波窗口参数进行归类合并,最后对该信号进行加权比对得到识别结果。实验证明,该方法很好地兼顾人脸结构特征和内容信息,具有良好的抗噪性和识别率。  相似文献   

16.
杨宏雨  余磊  王森 《计算机应用研究》2011,28(10):3974-3976
为了降低人脸Gabor特征的维数,提出了一种新的基于Gabor幅值的纹理表征(GMTR)方法用于人脸识别。GMTR由伽玛分布(ΓD)拟合Gabor幅值的分布来刻画,拟合的ΓD参数作为纹理特征。在FERET和Yale人脸库上的实验结果显示GMTR的识别性能优于传统的Gabor幅值特征,表明纹理特征具有更强的鉴别力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号