首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common lubricating oil sump is used in most modern internal combustion engines for cooling, wear protection, and friction reduction. This requires compromises during base oil and additive selection as a result of differing needs for lubricant performance in engine subsystems. The use of a dual lubricating loop, providing separate oil sumps for the power cylinder and valve train subsystems, was investigated experimentally to determine the effect of system segregation on oil degradation. A small diesel engine was modified, installed in a commercial generator unit, and operated for one oil drain cycle. Oil sampling was tailored to assess base and acid numbers, oxidation, soot concentration, water content, and viscosity changes. The experiment complemented an earlier study that investigated the fuel economy benefits of such a lubricating configuration. These include longer drain intervals for the cylinder head and power cylinder subsystems, improved wear performance for the valve train, and opportunities for alternative material selection during engine design. The experiment demonstrated protection of the valve train subsystem from soot contaminants in the power cylinder. Lower total acid number and oxidation tendency was also observed in the valve train.  相似文献   

2.
Engine friction models have been developed that take account of the variations in lubricants with temperature, shear rate, and pressure. These models have been used to study the lubricant sensitivities of modern diesel and gasoline engines. Total engine friction losses for a Perkins Phaser four‐cylinder, 4.0 l, turbocharged, inter‐cooled diesel engine, operating at 1300 rpm, with an SAE 15W‐40 lubricant, were estimated at approximately 2 kW, with the piston assembly contributing 46%, the bearings 49%, and the valve train 5%. Total engine friction losses for a Mercedes Benz M111 2.0 l gasoline engine (used in CEC sludge and fuel economy engine tests) operating at 2500 rpm, and medium load, for an SAE 15W‐40 lubricant, were estimated at 1.5 kW, with the piston assembly contributing 42%, the bearings 39%, and the valve train 19%.  相似文献   

3.
This paper presents the results of experimental work carried out to evaluate the effect of palm oil methyl ester also known as palm oil diesel (POD) and its emulsions, as alternative fuels, on unmodified indirect‐injection diesel engine wear and lubricant oil deterioration compared with ordinary diesel (OD). A constant 2500 rpm engine setting at half throttle was maintained throughout the wear debris and lubricant oil analysis period for 20 h for each fuel system. Samples of lubricant oil were collected through a one‐way valve connected to the crankcase sump at intervals of 4 h. The first sample was collected immediately after the engine had warmed up. The same lubricating oil, a conventional SAE 30, was used for all experiments. A multi‐element oil analyser was used to measure metal wear debris and lubricating oil additive depletion for the used lubricating oil. An ISL automatic houillon viscometer (ASTM D 445) and potentiometric titration (ASTM D 2896) were used to measure the viscosity and total base number, respectively. The lubricant oil analysis results for POD, OD, and their emulsions containing 10% water by volume were compared. Very promising results were obtained. The accumulation of metal wear debris in crankcase oil samples was lower with POD and its emulsion compared with the OD fuel. The addition of 10% water (by volume) to POD showed a promising tendency for wear resistance.  相似文献   

4.
This work presents a comparative assessment of engine oil performance on field test using urban transport vehicles powered by compressed natural gas engines using two different mineral oil formulations approved by engine manufacturer. The first one is considered as a baseline reference, and the second one is a higher quality formulation in terms of base stock refining and additive content. Higher quality oil has shown a significant enhanced lubricant performance, leading to reach the oil drain interval defined by engine manufacturer on these engines without penalties in maintenance costs. In order to assess oil performance, an oil analysis programme has been established for oil samples collected from vehicles operated under real service conditions in an urban transport fleet. Monitored parameters include oxidation, nitration, aminic anti‐oxidant additives depletion, anti‐wear additives depletion, total acid number, total basic number and remaining useful life number (as an estimation of anti‐oxidant additive depletion including aminic and zinc dialkyldithiophosphate). Results obtained in more than 90 samples from 15 different vehicles have shown higher degradation rates for low quality lubricant oil formulation. This deviation can be explained taking into account factors related with lower anti‐oxidant additives content and lower thermal stability that can be mainly related with the base stock quality. This lower oil performance can be finally converted into higher vehicle maintenance cost and lower engine reliability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Increasingly stringent emission legislation, together with the requirements for improved diesel engine performance, such as fuel economy, friction reduction, and extended drain intervals, have led to attention being focused on engine oil quality. The use of low‐friction engine oils can improve engine fuel efficiency and lead to a significant reduction of gaseous emissions. Therefore, engine oil is of importance when considering engine design parameters. This paper describes a study of the contribution of engine oil to diesel exhaust emissions. The investigations have shown that diesel engine particulate emissions as well as hydrocarbons and NOX emissions depend on the lubricant oil properties, in particular on the sulphur content, volatility, and metal content.  相似文献   

6.
Dilution of engine oil occurs when fuel is injected late in the combustion cycle to regenerate the diesel particulate filter used for trapping particulate emissions. Fuel dilution reduces oil viscosity and the concentration of engine oil additives, potentially compromising lubricant performance. Biodiesel usage may compound these issues due to its oxidative instability, and its higher boiling point compared to mineral diesel potentially causes it to concentrate more in the oil sump.

In this work, different amounts of mineral diesel and biodiesel (soy methyl ester, SME) were combined with 15W-40 CJ-4 diesel engine oil in laboratory oil aging experiments. Fuel was added and oil samples were withdrawn at periodic intervals. The oils were analyzed using typical oil analysis procedures to determine their condition, and wear evaluations under boundary lubricating conditions were determined using a high-frequency reciprocating rig (HFRR). Results showed that fuel dilution accelerated engine oil degradation, with biodiesel having a larger effect. However, friction remained unchanged with dilution, and wear actually decreased for fuel-diluted oils after 48 h of aging compared to aging without fuel dilution. Examination of the tribofilms by ultraviolet (UV) and visible Raman spectroscopy as well as Auger electron spectroscopy showed that additional carbon-containing components were present on tribofilms formed from fuel-diluted oils. These fuel-derived components may be responsible for the decreased wear observed.  相似文献   

7.
郑劲  丁雪兴 《机械》2012,39(6):67-70
应用振动法对柴油机气缸体上的振动信号进行分析,得出总振动量级主随活塞与气缸套磨损间隙的增大而适级放大.根据气缸体振动加速度响应功率谱图和柴油发动机总振动量级,可以确定活塞与气缸壁的间隙大小.应用油样铁谱分析技术,可以确定发动机的润滑状况及摩擦副的磨损程度和部位,并通过实例证明了其在柴油发动机故障诊断中的有效性.应用直读式原子发射光谱仪对柴油发动机润滑油油样进行检测,监控柴油发动机曲轴滑动轴承磨损状况,对保障发动机可靠运行起到很好的作用.  相似文献   

8.
介绍了柴油引燃甲醇双燃料燃烧对柴油机动力性和经济性的影响。在1台单缸、直喷、中冷柴油机上采用柴油引燃甲醇双燃料进行试验。结果显示甲醇柴油双燃料发动机在中高负荷及中高转速下运转可获得较好的燃油经济性。选择适当的引燃柴油量,双燃料发动机的动力性可以达到甚至超过原柴油的动力性。  相似文献   

9.

Various technologies are being studied for the advancement of diesel passenger cars and associated environmental regulations. Effective compression ignition combustion in diesel engines is highly dependent on the cylinder charging temperature, composition, and cylinder pressure during valve train operation. The application of variable valve control in diesel engines has several potential advantages. In this study, we applied the variable valve actuation system to a single-cylinder engine model using a GT-POWER simulation and analyzed the effects of the recompression and rebreathing valve profiles, and fuel-injection pressure on the combustion characteristics of a compression ignition engine. As a result, NOx emissions were reduced by more than 90 %, while those of indicated mean effective pressure were reduced by up to 35 %. The benefits of recompression strategies in terms of NOx emissions reduction were confirmed.

  相似文献   

10.
In large, slow, cross‐head marine diesel engines research has increasingly shown that the lubrication regime between piston rings and cylinder liner at top dead centre is of the boundary lubrication type due to the high gas pressure, low sliding speed, and high temperature. This means that the tribological properties of piston ring, cylinder liner, and cylinder lubricant in these types of engine under boundary lubrication conditions should be considered simultaneously when friction and wear between the piston ring and cylinder liner are studied. Until now there has been no standard method to evaluate boundary lubrication performance. There are a few traditional methods used in lubricant research, but their results are not correlated with service conditions. It is important to find a suitable method to evaluate the boundary lubrication performance of lubricants at the laboratory testing stage or before the engine testing stage. The important parameters, such as sliding speed, normal load, materials of the contacting pairs, and lubricant, need all to be controlled. In this paper a systematic experimental procedure, the ‘five times heating and cooling test’, is introduced to assess lubricant properties under boundary lubrication conditions. Most of the parameters mentioned above are controlled. The model contact, of pin‐on‐plate form, is made from the actual piston and liner materials used in a large‐bore, slow, cross‐head marine diesel engine. The temperature characteristics of different blends of lubricants are investigated under boundary lubrication conditions using a pin‐on‐plate reciprocating test rig. These blends of lubricants have the same additives but different base fluids; they nevertheless fulfil the physical and chemical requirements of a real marine diesel engine. The test temperature range is from room temperature to the working temperature of the top piston ring. The experiments show that there are different temperature—friction characteristics for lubricants with different bases and the same additive package and there are also different temperature—friction characteristics during heating up and cooling down for each blend. Single‐base lubricants have more promising temperature—friction characteristics than those of a blend of a high‐viscosity base and a low‐viscosity base at high temperature.  相似文献   

11.
利用合成和复配技术制备了新型减摩润滑剂,采用WD615型柴油发动机和C698QA型汽油发动机进行了全速全负荷的加速强化台架试验和300摩托小时的可靠性台架试验,考察了该润滑剂作为CD15W/40和SF10W/30机油添加剂对发动机功率、扭矩、机械损失、油耗等外特性的影响。结果表明:研制的减摩润滑剂在改善车辆发动机的动力性能和延长使用寿命方面具有良好的效果.与CD15W/40机油相比,该润滑剂能够使柴油发动机的功率、扭矩分别提高2.1%、2.0%.降低机械损失4%,节省油耗达1.8%;与SF10W/30机油相比,使用新型减摩润滑剂后的汽油发动机最人功率和最大扭矩分别升高了6.1%和2.0%,油耗降低了6.0%。这是由于该润滑剂充分利用了配方中多种功能添加剂的单剂特性和复合协同功效,提升了传统润滑油的减摩润滑性能和整体性能。  相似文献   

12.
采用往复振动机模拟小型二冲程发动机运转工况,实验研究汽油和甲醇为燃料时发动机气缸和活塞环间的摩擦特性,并比较分别使用润滑油新油、润滑油老化油、润滑油新油和老化油的混合油作为润滑油时气缸和活塞环间的摩擦特性。结果表明,以甲醇为燃料时的摩擦因数和磨损量均小于以汽油为燃料时的摩擦因数和磨损量,特别是使用添加了润滑油新油的燃料时的摩擦因数和磨损量最小。通过黏度和热重(TG)分析,探讨甲醇燃料改善气缸和活塞环间的摩擦特性的原因,结果表明,甲醇燃料具有较高的黏度和较低的摩擦因数,因而以甲醇为燃料时可以降低磨损  相似文献   

13.
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.  相似文献   

14.
分形维数在内燃机振动诊断中的应用   总被引:4,自引:0,他引:4  
将分形理论引入内燃机的振动诊断中,根据内燃机的配气定时,着重研究了缸盖振动信号中对应燃烧段的数据,计算其关联维数,将关联维数用于刻划内燃机缸盖在气门不同状态时表现的非线性行为,从而进行故障诊断与分类。结果表明,当气门在不同状态时,缺盖振动信号中对应燃烧段数据的关联维数是不同的,可以将其作为判断气门漏气的一个诊断特征量。  相似文献   

15.
内燃机故障的多重分形诊断方法研究   总被引:1,自引:0,他引:1  
实测了6135柴油机气门机构处于不同状态时的缸盖振动信号,计算振动信号的多重分形维数,将其用于刻划缸盖在气门不同状态时表现的非线性行为,从而对故障分类与诊断。结果表明,当气门在不同状态时缸盖振动信号的多重分形维数是不同的,可以将其作为判断气门状态的依据。  相似文献   

16.
激光表面微造型技术是改善摩擦副表面摩擦学性能的有效途径之一。基于声光调Q技术的二极管泵浦固体光源(DPSS)Nd:YAG激光器,采用“单脉冲同点间隔多次”激光微加工工艺,对CA6DF2-26型柴油机气缸套内孔表面进行激光珩磨加工。加工出的缸套网纹参数具有较好的一致性,达到了主机厂的技术要求。进行了激光珩磨缸套的台架综合性能试验研究,结果表明,采用激光珩磨缸套的发动机,其功率、扭矩、燃油消耗指标保持稳定,与采用传统平台珩磨网纹缸套的发动机相比,柴油机的机油油耗降低53%,漏气量降低近50%。  相似文献   

17.
Chen  Chun-I  Hsu  Stephen M. 《Tribology Letters》2003,14(2):83-90
The ability of a lubricant to protect increasingly complex diesel engines directly affects engine durability and warranty costs and is becoming increasingly costly to validate. This paper presents a novel approach combining a chemical kinetic model using rate constants determined by a set of laboratory bench tests and a finite-difference computer program to predict lubricant performance in a given diesel engine. The computer program takes into account the engine's mechanical design, such as temperature, pressure, oil flow rate, top ring zone volume, and other parameters. The chemical kinetic model incorporates the kinetic rate constants determined for that particular lubricant in a set of special bench-test procedures tailored to a particular engine and its operating conditions. The bench-test procedures take into account the necessary environment in that particular engine such as specific metal catalysis, oxidation conditions, and deposit formation. The computer program then combines the lubricant degradation model with the engine operating sequence to yield a predictive simulation. This approach is capable of predicting the amount of deposit in the top ring groove and the amount of oil consumption in that engine. The computer program models the engine as three chemical reactors in series. The three reactors are: the oil sump, the top piston ring groove, and the piston cylinder-liner interface. Oil flows from the sump to the piston rings and to the piston liner area. The oxidation process is described by a set of simplified chemical kinetic rate equations. The kinetic constants of the lubricant are determined by laboratory bench-test procedures using Differential Scanning Calorimetry (DSC), a Thermal Gravimetric Analyzer (TGA), and the Micro-Oxidation test apparatus. The design and the operating conditions of the engine define the chemical reaction conditions used in the simulation program such as the temperatures of the reactions, the residence time in a particular reactor, the volume of the reactors, and the operating sequence of the engine. The simulation program is validated by the Caterpillar 1K engine dynamometer test results. Two experimental high-temperature lubricants and three IK reference oils were used in this study. Good agreement between model simulation and 1K engine test results was obtained.  相似文献   

18.
针对目前单缸柴油机由于没有安装副油箱或者油量指示装置,实用中因为没有及时给柴油机补充燃油而导致气堵现象发生,设计研究了农用柴油机自动提醒加油油箱,也就是在原有普通单缸柴油机油箱的基础上设计了浮子筒结构和控制装置。设计的控制装置采用普通6V电源单独供电、数字电路检测报警,在发动机还有一定量剩油的情况下,通过指示灯显示和蜂鸣器报警提醒用户及时补充燃油,并通过实验证明该装置能够满足需要。研究成果对农用柴油机油箱的设计也具有一定的指导意义。  相似文献   

19.
Jing  Ya-Bing  Liu  Chang-Wen  Bi  Feng-Rong  Bi  Xiao-Yang  Wang  Xia  Shao  Kang 《机械工程学报(英文版)》2017,30(4):991-1007
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines,fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification.The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides,the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier Fast ICASVM and could produce the excellent classification results.The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.  相似文献   

20.
开展了两种润滑添加剂对二甲醚发动机燃烧与排放特性影响的试验研究。结果表明:分别加入C100和R100这两种润滑添加剂后二甲醚发动机均可在宽广的转速和负荷范围内工作,其输出功率都可达到甚至超过原柴油机,但加入润滑添加剂R100时二甲醚发动机的输出功率、缸内最高爆发压力和最大压力升高率比加入润滑添加剂C100时的略高;加入两种不同润滑添加剂后二甲醚发动机都可以实现无烟燃烧,NOx、HC和CO排放相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号