首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
左海滨  戎妍  张建良  吴小兵  高冰 《钢铁》2014,49(1):7-12
 碱土金属对焦炭气化反应具有正催化作用,而焦炭的气化特性影响高炉的能量利用状况。通过实验室条件下配煤炼焦试验,系统研究了添加氧化钙质量分数分别为0%,1%,2%,4%,8%,12%时对焦炭强度、气化起始反应温度、平均反应速率及表观活化能的影响。研究结果表明:当配加氧化钙质量分数为4%时,焦炭强度降低最大为7%,气化起始反应温度降低最多为80℃,平均气化反应速率增加最大,表观活化能降低最大约30%。  相似文献   

2.
为了研究ZnO对焦炭气化反应的催化作用,采用热重分析法(TGA)对不同ZnO质量分数的两种焦炭(Coke A和Coke B)气化反应进行对比研究。结果表明,在一定ZnO质量分数范围内,随着ZnO质量分数的增加,其对焦炭气化反应的催化作用越明显。通过对比特征温度,发现ZnO对Coke B气化反应的影响较明显。从碳转换速率(DTG)曲线中发现,添加ZnO后的焦炭气化反应速率从开始反应温度到950℃左右呈升高趋势,氧化锌质量分数越高,反应速率越快,950~1056℃时反应速率趋于稳定,之后再次呈上升趋势。利用Kissinger-AkahiraSunose(KAS)模型计算动力学参数,发现添加ZnO使焦炭气化反应活化能降低。  相似文献   

3.
高反应性焦炭可降低高炉热储备区温度,提高高炉冶炼效率.钢渣中有大量的钙和铁,是理想的焦炭气化反应催化剂.在制备高反应性焦炭的过程中,钢渣在配合煤中的粒度和添加量会影响焦炭的反应性和反应后强度.本文从宏观动力学角度研究了钢渣对焦炭反应性和反应后强度影响的原因.细焦粉和粒度为3~6 mm的焦炭分别与CO2在950,1 100和1 250℃进行了气化反应.通过细焦粉的气化曲线确定了焦炭在各温度的本征初始气化速率(r0),通过粒焦炭的气化曲线确定了受内扩散影响的焦炭表观气化反应速率(rD).对反应效率因子(ηef)和西勒模数()的分析表明,焦炭基质反应性和气孔结构两者共同决定了焦炭反应性和反应后强度.  相似文献   

4.
通过热重实验获得了873、973和1173 K三个温度条件下不同组成的H_2-CO混合气体还原氧化亚铁的动力学曲线,发现在873和973 K时由于析碳反应的发生,动力学曲线较为混乱,没有规律,而在1 173 K时,还原曲线则随还原气体中H_2含量(体积分数)的增加表现出明显的规律性.通过H_2-CO与H_2-Ar气体还原氧化亚铁动力学的比较,混合气体中CO参与反应的速率与其含量(体积分数)基本符合线性关系.还原产物形貌观察的结果表明,随着反应温度的升高,还原产物孔隙增大,铁相充分发育长大并逐渐有明显的烧结现象.  相似文献   

5.
介绍了焦炭高温热性质测定装置的特点以及主要功能,并通过应用建立了焦炭起始反应温度的测定方法,可以用来表征高炉热储备区的开始温度,指导高炉生产。通过对焦炭在不同温度下的反应速率的测定,发现随着混合反应气体中CO_2比例增加,焦炭反应速率呈增加的趋势;随着反应温度增加,焦炭反应速率呈增加的趋势;反应温度越高,随着CO_2比例增加,焦炭反应速率增加越快;在CO_2比例较低时,不同反应温度下的焦炭反应速率都不大,但当CO_2比例达到50%时,焦炭反应速率随温度升高而明显提高,从0.43g/min提高到2.00g/min。  相似文献   

6.
采用液相吸附法研究了不同温度、富锌量等条件对捣固焦和顶装焦气化反应的影响,并结合XRD、扫描电子显微镜和光学显微镜对比分析了锌对2种焦炭气化反应后的微晶结构、显微结构、孔结构的影响。研究结果表明,升高温度和增大富锌量均能使焦炭反应性增大,反应后焦炭强度减小。反应温度低于1 000℃时,锌对焦炭气化反应的影响较小,而在1 100℃时,2种焦炭的反应率随富锌浓度的增大快速增大,且富锌后顶装焦的反应率比捣固焦高约1%~2%。XRD分析表明,锌对焦炭有序化微晶气化反应的催化作用大于无序化微晶,从而导致气化反应后焦炭微晶片层的堆积高度减小,石墨化程度降低。结合扫描电子显微镜和光学显微全景图发现,锌在催化焦炭气化反应过程中孔壁变薄甚至消失,孔面积和孔直径增大,孔的贯穿连通程度加大,为锌蒸气的渗透和气化反应的动力学提供有利条件,导致反应进一步被加剧,但捣固焦较致密的孔结构使其在气化反应中具有优于顶装焦的抗锌催化能力。  相似文献   

7.
摘要:焦炭在高炉冶炼过程中起着重要作用,其中焦炭的气化反应直接关系到其热态强度,并影响高炉内部的透气透液性能。综述了高炉内焦炭气化反应的研究现状,并讨论了焦炭气化反应的评价方法;阐述了有害元素K、Na、Zn和Cl对焦炭气化反应影响的研究进展。指出现有研究多着眼于焦炭和纯CO2或水蒸汽的气化反应,并且冶金工作者对企业通用的焦炭气化反应的测定方法和标准存在不同的看法。K、Na、Zn和Cl均对焦炭气化反应起催化作用,其中K、Na和Zn的催化机理包括氧传递、层间化合物和电子转移3种理论。建议进一步模拟高炉实际气氛和温度条件开展焦炭气化反应的研究工作,并对Cl元素对焦炭气化反应的影响机理进行深入探索。  相似文献   

8.
摘要:焦炭在高炉冶炼过程中起着重要作用,其中焦炭的气化反应直接关系到其热态强度,并影响高炉内部的透气透液性能。综述了高炉内焦炭气化反应的研究现状,并讨论了焦炭气化反应的评价方法;阐述了有害元素K、Na、Zn和Cl对焦炭气化反应影响的研究进展。指出现有研究多着眼于焦炭和纯CO2或水蒸汽的气化反应,并且冶金工作者对企业通用的焦炭气化反应的测定方法和标准存在不同的看法。K、Na、Zn和Cl均对焦炭气化反应起催化作用,其中K、Na和Zn的催化机理包括氧传递、层间化合物和电子转移3种理论。建议进一步模拟高炉实际气氛和温度条件开展焦炭气化反应的研究工作,并对Cl元素对焦炭气化反应的影响机理进行深入探索。  相似文献   

9.
焦炭在高炉冶炼过程中起着重要作用,其中焦炭的气化反应直接关系到其热态强度,并影响高炉内部的透气透液性能。综述了高炉内焦炭气化反应的研究现状,并讨论了焦炭气化反应的评价方法;阐述了有害元素K、Na、Zn和Cl对焦炭气化反应影响的研究进展。指出现有研究多着眼于焦炭和纯CO_2或水蒸汽的气化反应,并且冶金工作者对企业通用的焦炭气化反应的测定方法和标准存在不同的看法。K、Na、Zn和Cl均对焦炭气化反应起催化作用,其中K、Na和Zn的催化机理包括氧传递、层间化合物和电子转移3种理论。建议进一步模拟高炉实际气氛和温度条件开展焦炭气化反应的研究工作,并对Cl元素对焦炭气化反应的影响机理进行深入探索。  相似文献   

10.
铜渣中含有30 %~40 %的Fe, 对铜渣中的Fe进行回收, 有利于缓解中国依赖进口铁矿石的压力.基于热力学分析氯化除铜的可行性, 在823 K、873 K、923 K、973 K温度下, 通过热重分析研究CuO-FeCl2体系的氯化过程动力学, 并考察反应温度和Ar气流量对反应的影响: CuO-FeCl2体系的氯化率随温度的升高而增大, 当Ar流量为50 mL/min时, 氯化率达到最大值为62.46 %.通过推导氯化反应动力学公式, 确定CuO-FeCl2体系的氯化反应为0级反应, 并且在873 K时由氯化过程动力学区过渡到扩散区, 动力学区的反应速率取决于CuCl2的挥发速率, 扩散区的反应速率取决于FeCl2向CuO表面扩散的速率.   相似文献   

11.
为了掌握高温区碱金属对焦炭气化过程的影响,在N2-CO-CO2-H2O和N2-CO-CO2-H2O-K(g)气氛下,利用热失重法分别研究了焦炭在1 413~1 773 K的气化反应特征。结果显示,K(g)对焦炭的气化反应具有较强的正催化作用,可以显著提高有效内扩散系数(De)和界面反应速率常数(k+),降低内扩散活化能与界面反应活化能,且K(g)对内扩散的影响程度高于对界面反应的影响。随着反应率的增加,内扩散阻力(ηi)和界面反应阻力(ηC)均逐渐增加,K(g)可以促进ηiηC降低。在N2-CO-CO2-H2O气氛、1 413 K时,气化反应的限制性环节逐渐由界面反应转为内扩散;而在1 473、1 573、1 673和1 773 K时其限制性环节始终为界面反应。在N2-CO-CO2-H2O-K(g)气氛下,气化反应的限制性环节始终为界面反应。  相似文献   

12.
为了掌握高温区碱金属对焦炭气化过程的影响,在N2-CO-CO2-H2O和N2-CO-CO2-H2O-K(g)气氛下,利用热失重法分别研究了焦炭在1 413~1 773 K的气化反应特征。结果显示,K(g)对焦炭的气化反应具有较强的正催化作用,可以显著提高有效内扩散系数(De)和界面反应速率常数(k+),降低内扩散活化能与界面反应活化能,且K(g)对内扩散的影响程度高于对界面反应的影响。随着反应率的增加,内扩散阻力(ηi)和界面反应阻力(ηC)均逐渐增加,K(g)可以促进ηiηC降低。在N2-CO-CO2-H2O气氛、1 413 K时,气化反应的限制性环节逐渐由界面反应转为内扩散;而在1 473、1 573、1 673和1 773 K时其限制性环节始终为界面反应。在N2-CO-CO2-H2O-K(g)气氛下,气化反应的限制性环节始终为界面反应。  相似文献   

13.
The gasification of graphite by carbon dioxide was studied under atmospheric pressure in a fixed bed reactor in the temperature range of 1173–1773?K, CO2 partial pressures 2–10?kPa and gas flow rate 0·5–2·0?L?min?1. Iron presented in a small amount in graphite ash had a catalytic effect on the gasification reaction at 1373?K; this effect was weaker at 1473?K due to the melting of iron saturated with carbon. The gasification rate increased with increasing CO2 partial pressure and total gas flow rate.  相似文献   

14.
 为了解决脱磷转炉熔渣中磷含量过高而不能直接实现转炉内循环利用的问题,在实验室进行了焦炭还原脱磷转炉熔渣热态试验,系统研究了不同碳当量、温度、碱度、FeO质量分数、氮气流量对气化脱磷率的影响规律。研究结果表明,试验采用2倍碳当量气化脱磷效果较好,气化脱磷率随着温度的升高而逐渐增加,1 733 K时气化脱磷率为68.6%;气化脱磷率随着碱度的降低而逐渐增加,当碱度控制为1.4时气化脱磷率可以达到45.6%;FeO质量分数在10%~30%范围变化时,气化脱磷率随着FeO质量分数的增加先升高后降低,FeO质量分数为25%时气化脱磷率最高可以达到43.5%。气化脱磷率随着氮气流量的增加先升高后降低,氮气流量为80 L/h时,气化脱磷率为45.37%。由SEM分析结果可知,脱磷炉渣中的磷主要富集在硅钙富集区域,气化脱磷反应后微区内磷分布无特殊规律。  相似文献   

15.
在1 100~1 350℃,1 000Pa,3倍碳当量条件下,采用微波加热方法对碳还原转炉钢渣的气化脱磷反应进行了宏观动力学分析。结果表明,微波加热条件下,气化脱磷率为31.0%~35.7%,该气化脱磷反应为二级反应,活化能为55.52kJ/mol,并得到了气化脱磷反应速率常数与温度的关系式,同时界面化学反应为可能的限制性环节。通过提高反应温度、减小钢渣及焦炭粒度、增大反应物料接触面积,可提高气化脱磷反应的速率。研究结果为探明微波碳热还原脱磷反应的机理及速率问题,实现转炉钢渣在钢铁企业内部的循环利用提供了理论依据。  相似文献   

16.
The gasification behavior of different iron cokes was studied in laboratory by the means of thermogravimetry technique, the temperatures at which iron cokes start to react with CO2 were measured, and theoretical analysis was conducted with the FactSage thermodynamic software. The results show that the higher the metallic iron content in iron coke, the higher the gasification rate, and it increases with the increasing temperature; metallic iron can promote the decrease of starting temperature of gasification reaction, and the higher the metallic iron content, the more the decrease extent of gasification starting temperature; at the initial stage of gasification reaction, metallic iron in iron coke is oxidized by CO2, as a result, the weight of samples not only decrease but also increase.  相似文献   

17.
为了揭示硼铁精矿的碳热还原机理,以高纯石墨为还原剂,进行硼铁精矿含碳球团等温还原实验,并采用积分法进行动力学分析.还原温度分别设定为1000、1050、1100、1150、1200、1250和1300℃,配碳量即C/O摩尔比=1.0.当还原度为0.1<α<0.8时,温度对活化能和速率控制环节有重要影响:还原温度≤1100℃时,平均活化能为202.6 k J·mol-1,还原反应的速率控制环节为碳的气化反应;还原温度>1100℃时,平均活化能为116.7 k J·mol-1,为碳气化反应和Fe O还原反应共同控制.当还原度α≥0.8时(还原温度>1100℃),可能的速率控制环节为碳原子在金属铁中的扩散.碳气化反应是含碳球团还原过程中主要速率控制环节,原因在于硼铁精矿中硼元素对碳气化反应具有较强烈的化学抑制作用.   相似文献   

18.
The technology of coal gasification in shaft furnace is an effective way to develop direct reduction iron in China.In order to clarify the process of the reduction of oxidized pellets in shaft furnace by carbon monoxide or hydrogen in two ways,i.e.thermodynamics and kinetics,the gas utilization and reaction mechanism were studied by theoretical computations and isothermal thermogravimetric experiment.The results showed that the gas utilization increased with the rise of temperature when xH 2 /xCO ≥1and with the increase of xCO /(xH 2 +xCO)when temperature is less than 1 073K.The water-gas shift reaction restrains efficient utilization of gas,particularly in high temperature and hydrogen-rich gas.The gas utilization dropped with increase of carburization quantity of direct reduction iron(DRI)and oxygen potential of atmosphere.With the increase of both temperature and content of H2 in inlet gas, the reaction rate increased.At 100% H2 atmosphere,the interfacial chemical reaction is the dominant reaction restricted step.For the H2-CO mixture atmosphere,the reduction process is controlled by both interfacial chemical reaction and internal diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号