首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is well established that an independent inositide cycle is present within the nucleus, where it is involved in the control of cell proliferation and differentiation. Previous results have shown that when Swiss 3T3 cells are treated with insulin-like growth factor-I (IGF-I) a rapid and sustained increase in mass of diacylglycerol (DAG) occurs within the nuclei, accompanied by a decrease in the levels of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. However, it is unclear whether or not other lipids could contribute to this prolonged rise in DAG levels. We now report that the IGF-I-dependent increase in nuclear DAG production can be inhibited by the specific phosphatidylinositol phospholipase C inhibitor 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or by neomycin sulfate but not by the purported phosphatidylcholine-phospholipase C specific inhibitor D609 or by inhibitors of phospholipase D-mediated DAG generation. Treatment of cells with 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or neomycin sulfate inhibited translocation of protein kinase C-alpha to the nucleus. Moreover, exposure of cells to 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, but not to D609, dramatically reduced the number of cells entering S-phase upon stimulation with IGF-I. These results suggest that the only phospholipase responsible for generation of nuclear DAG after IGF-I stimulation of 3T3 cells is PI-PLC. When this activity is inhibited, neither DAG rise is seen nor PKC-alpha translocation to the nucleus occurs. Furthermore, this PI-PLC activity appears to be essential for the G0/G1 to S-phase transition.  相似文献   

2.
IGFBP-1 is elevated in fetuses with long-term, chronic hypoxia and intrauterine growth restriction. We investigated the hypothesis that hypoxia regulates IGFBP-1 in the human fetus in vivo and IGFBP-1 gene expression and protein in vitro. Umbilical artery IGFBP-1 levels (mean +/- SEM) from term babies with respiratory acidosis (acute hypoxia), normal babies, and those with mixed respiratory/metabolic acidosis (more profound and prolonged hypoxia) were measured using an immunoradiometric assay. IGFBP-1 levels were similar in normal (n = 12) and acutely hypoxic (n = 6) babies (189.1 +/- 71.8 vs. 175.8 +/- 45.9 ng /ml, respectively, P = 0.789). However, with more profound and prolonged hypoxia (n = 19), IGFBP-1 levels were markedly elevated (470.6 +/- 80.0 ng /ml, P = 0.044). To investigate IGFBP-1 regulation by hypoxia in vitro, HepG2 cells were incubated under hypoxia (pO2 = 2%) and normoxia (pO2 = 20%). IGFBP-1 protein and mRNA increased 8- and 12-fold, respectively, under hypoxic conditions. Hypoxia did not affect protein or mRNA levels of IGFBP-2 or -4. IGFBP-5 and -6 mRNAs, undetectable in control cells, were not induced by hypoxia, whereas minimally expressed IGFBP-3 mRNA increased twofold. Investigation into IGFBP-1 gene structure revealed three potential consensus sequences for the hypoxia response element (HRE) in the first intron. To investigate functionality, a 372-bp fragment of IGFBP-1 intron 1, containing putative HREs, was placed 5' to a heterologous hsp70 promoter in a plasmid using luciferase as a reporter gene. Under hypoxia, reporter gene activity increased up to 30-fold. Mutations in the middle HRE abolished reporter activity in response to hypoxia, suggesting that this HRE is functional in the IGFBP-1 hypoxia response. Cotransfection of HRE reporter genes with a constitutively expressing hypoxia-inducible factor 1 plasmid in HepG2 cells resulted in a fourfold induction of reporter activity, suggesting a role for hypoxia-inducible factor 1 in hypoxia induction of IGFBP-1 gene expression. These data support the hypothesis that hypoxia regulation of IGFBP-1 may be a mechanism operating in the human fetus to restrict insulin-like growth factor-mediated growth in utero under conditions of chronic hypoxia and limited substrate availability.  相似文献   

3.
To examine the relationship between the expression of insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) and cell growth in a cell type with a defined IGF/IGFBP system, an ovine IGFBP-2 complementary DNA was overexpressed in C6 glioma cells. C6 cells produce IGFBP-3, IGFBP-4, a negligible amount of IGFBP-2, and IGF-I. An ovine IGFBP-2 complementary DNA was transfected into C6 cells, and nine colonies that stably expressed variable levels of IGFBP-2 messenger RNA were selected. Synthesis of corresponding levels of IGFBP-2 was confirmed by ligand blot and immunoblot analyses of conditioned media. Three clones exhibited significantly reduced growth rates, and the remainder showed growth rates similar to those of the wild-type C6 cells. The clones, which overexpressed high levels of IGFBP-2 and IGF-I, had growth rates similar to the wild-type cells, whereas the three clones that overexpressed IGFBP-2 without a concomitant increase in IGF-I had reduced growth rates. In addition, a cell-associated IGFBP was identified in the slow growing clones, but not in the wild-type or the fast growing clones. This cell-associated IGFBP was deduced to be IGFBP-5 based on its molecular size, detection of IGFBP-5 messenger RNA only in slow growing clones, and competition of its binding by heparin. Growth of the slow growing clone, C6BP2-1, could not be overcome by the addition of exogenous IGF-I, suggesting that the cell-associated IGFBP-5 was the dominant regulator of IGF action. These observations suggested that 1) in C6 glioma cells cellular growth is altered by a disturbance in the equilibrium between IGF-I and IGFBPs and/or the functional properties of the IGFBPs; and 2) C6 cells may have a limited capacity to modulate IGF/IGFBP expression in response to changes in endogenous expression of IGFBPs. Endogenous regulation of the balance between IGFs and IGFBPs may be a model of regulation of cellular growth in tumor cells.  相似文献   

4.
5.
Hypersensitivity to cross-linking agents and predisposition to malignancy are characteristic of the genetically heterogeneous inherited bone marrow failure syndrome, Fanconi anemia (FA). The protein encoded by the recently cloned FA complementation group A gene, FAA, has been expected to localize in the nucleus as based on the presence of sequences homologous to a bipartite nuclear localization signal (NLS) and a leucine repeat motif. In contrast to this expectation, we show here that a functionally active FAA-green fluorescent protein (GFP) hybrid resides in the cytoplasmic compartment of human kidney 293 cells. In accordance with this finding, disruption of the putative NLS by site-directed mutagenesis failed to affect both subcellular localization and the capacity to complement hypersensitivity to the cross-linking agent mitomycin C in FA-A lymphoblasts. Furthermore, the N-terminal part of FAA with the putative NLS at amino acid position 18 to 35 showed no nuclear translocation activity when fused to GFP, while the first 115 N-terminal amino acids appeared to be indispensable for the complementing activity in FA-A cells. Similarly, mutagenesis studies of the putative leucine repeat showed that, even though this region of the protein is important for complementing activity, this activity does not depend on an intact leucine zipper motif. Finally, fusion of the NLS motif derived from the SV40 large T antigen to FAA could not direct the hybrid protein into the nucleus of 293 cells, suggesting that FAA is somehow maintained in the cytoplasm via currently unknown mechanisms. Thus, like the first identified FA protein, FAC, FAA seems to exert its function in the cytoplasmic compartment suggesting FA proteins to be active in a yet to be elucidated cytoplasmic pathway that governs hematopoiesis and protects against genomic instability.  相似文献   

6.
Previously, we showed that retinoic acid (RA) binds to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) with high affinity, suggesting that M6P/IGF2R may be a receptor for RA. Here, we show that RA, after 2-3 h of incubation with cultured neonatal-rat cardiac fibroblasts, dramatically alters the intracellular distribution of M6P/IGF2R as well as that of cathepsin B (a lysosomal protease bearing M6P). Immunofluorescence techniques indicate that this change in intracellular distribution is characterized by a shift of the proteins from the perinuclear area to cytoplasmic vesicles. The effect of RA was neither blocked by an RA nuclear receptor antagonist (AGN193109) nor mimicked by a selective RA nuclear-receptor agonist (TTNPB). Furthermore, the RA-induced translocation of cathepsin B was not observed in M6P/IGF2R-deficient P388D1 cells but occurred in stably transfected P388D1 cells expressing the receptor, suggesting that the effect of RA might be the result of direct interaction with M6P/IGF2R, rather than the result of binding to the nuclear receptors. These observations not only support the idea that M6P/IGF2R mediates an RA-response pathway but also indicate a role for RA in control of intracellular trafficking of lysosomal enzymes. Therefore, our observations may have important implications for the understanding of the diverse biological effects of retinoids.  相似文献   

7.
Human p53 was expressed in E. coli, purified, labeled with fluorescein iodoacetamide (IAF) and characterized for sequence-specific DNA binding and epitope disposition. Injected into the cytoplasm or nuclei of 3T3 cells IAF-p53 was imported into or exported from nuclei within minutes. Import was inhibited by coinjection of the lectin wheat germ agglutinine (WGA). In contrast, the peptide-protein conjugate NLS-HSA carrying the nuclear localization sequence (NLS) of the SV40 T antigen was only imported but not exported. 3T3 polykaryons were injected with IAF-p53 and photo-bleached by Scanning Microphotolysis in such a manner that only a single nucleus per polykaryon remained non-bleached. IAF-p53 was found to migrate rapidly (halftime 10 min) from non-bleached into bleached nuclei, while NLS-HSA did not. In digitonin permeabilized cells IAF-p53 was imported into nuclei. When removed from the medium after nuclear accumulation IAF-p53 was exported from the nuclei. Nuclear import and export of IAF-p53 both were rapid (halftimes of a few minutes, 22 C) and strongly inhibited by WGA or incubation on ice. NLS-HSA was only imported but not exported. We conclude that the nucleocytoplasmic transport of p53, in contrast to that of NLS-HSA, is bidirectional and that transport in both directions is carrier mediated and energy dependent. These results suggest that p53 contains nuclear export signals (NES) in addition to import signals (NLS) and thus open new views on the potential regulation of p53 cellular fractions.  相似文献   

8.
Osteoblast-like UMR-106.01 rat osteosarcoma cells express high affinity growth hormone (GH) receptors (GHRs). Because osteoblasts secrete insulin-like growth factor binding protein-5 (IGFBP-5), we evaluated whether it also modulates GH binding and GHR expression in UMR cells. Human recombinant intact IGFBP-5 stimulated 125I-hGH binding in a dose-dependent manner (dose range 300-3000 ng/ml), inducing an increase to 193.6 +/- 2.1% of control binding at 3000 ng/ml (P < 0.001). Carboxy-truncated IGFBP-5 also stimulated GH binding but with less potency (125 +/- 2.7% of control at 3000 ng/ml, P < 0.01). GHRs identified by chemical crosslinking of 125I-hGH to cell monolayers increased after treatment with IGFBP-5 and decreased in response to insulin-like growth factor-I (IGF-I). GHR mRNA levels, as quantitated by a solution hybridization RNAse protection assay, increased up to 3 to 7-fold in a time-dependent manner by intact IGFBP-5 but not by carboxy-truncated IGFBP-5. An antiserum to IGFBP-5 reduced basal GH binding to 56.7 +/- 4.3% of control value at a concentration of 0.5% (P < 0.001), showing that IGFBP-5 produced by the cells is a strong regulator of GH binding. IGFBP-5 antiserum also decreased GH binding to 85.9 +/- 0.9% of IGFBP-5 stimulated value (P < 0.001), showing the specificity of IGFBP-5 stimulation. To determine whether the GHR upregulation was physiologically significant, cell proliferation was evaluated after coincubation of IGFBP-5 with low, non-stimulatory concentrations of GH. IGFBP-5 (1000 ng/ml) induced cell proliferation to 116.2 +/- 3.2% of control levels, and coincubation with hGH at 10 ng/ml induced an increase to 133.3 +/- 0.1% of control levels. We conclude that exogenous and endogenous IGFBP-5 upregulate GHR mRNA levels and GH binding and this interaction potentiates GH-stimulated mitogenesis in osteoblastic cells.  相似文献   

9.
10.
PURPOSE: Our purpose was to analyze potential interactions between the embryo and the maternal endometrial interface in vivo by analyzing immunolocalization of insulin-like growth factor-binding proteins (IGFBPs) -1, -2, and -3 in implantation sites of the mouse. METHODS: Six-week-old B6D2F1 female mice underwent superovulation followed by mating and sacrifice at timed intervals. Formalin-fixed paraffin-embedded tissue was used for avidin-biotin immunocytochemical localization of IGFBPs utilizing standard methodology. RESULTS: Immunostaining at 1.5 days post coitum revealed light staining in the epithelial glandular cells and faint staining in decidual stroma for both IGFBP-1 and IGFBP-2. At 7.5-10.5 days post coitum, there was moderate-dense immunostaining in the decidualized stromal cells at the implantation site for all three IGFBPs, whereas light immunostaining was seen in nonimplantation site decidua. CONCLUSIONS: Compartmentalization of immunostaining for IGFBP-1, -2, and -3 within decidualized stroma suggests that these proteins may be regulated by trophoblastic and/or embryonic signals.  相似文献   

11.
PIP3BP is a phosphatidylinositol 3,4,5-trisphosphate-binding protein (PIP3BP) abundant in brain, containing a zinc finger motif and two pleckstrin homology (PH) domains. Staining of rat brain cells with anti-PIP3BP antibody and determination of localization of PIP3BP fused to the green fluorescent protein (GFP-PIP3BP) revealed that PIP3BP was targeted to the nucleus. Targeting was dependent on a putative nuclear localization signal in PIP3BP. Generation of PIP3 in the nucleus was detected in H2O2-treated 293T cells, nerve growth factor (NGF)-treated PC12 cells, and platelet-derived growth factor (PDGF)-treated NIH 3T3 cells. Translocation of phosphatidylinositol 3-kinase (PI 3-kinase) to the nucleus and enhanced activity of PI 3-kinase in the nucleus fraction were observed after H2O2 treatment of 293T cells, suggesting that PI 3-kinase can be activated in the nucleus as well as in the membrane after appropriate stimulation of the cells. Co-expression of the constitutively active PI 3-kinase with PIP3BP resulted in exportation of the protein from the nucleus to the cytoplasm, suggesting that PIP3BP can function as a PIP3-binding protein in the intact cells. These results imply that there may be an unknown function of PI 3-kinase in the nucleus.  相似文献   

12.
Various proteinases have been postulated to function in limited proteolysis of insulin-like growth factor binding proteins (IGFBPs) contributing to the regulation of IGF bioavailability. In this study, we report on the in vitro degradation of IGFs and IGFBPs by the purified acidic aspartylprotease cathepsin D that has been shown to proteolyze IGFBP-3. Recombinant human [125I] IGFBP-1 to -5 were processed by cathepsin D to fragments of defined sizes in a concentration dependent manner, whereas IGFBP-6 was not degraded. Ligand blotting revealed that none of the IGFBP-1 or -3 fragments formed by cathepsin D retain their ability to bind IGF. By N-terminal sequence analysis of nonglycosylated IGFBP-3 fragments produced by cathepsin D, at least four different cleavage sites were identified. Some of these cleavage sites were identical or differed by one amino acid from sites used by other IGFBP proteases described. The IGFBP-3 and -4 cleavage sites produced by cathepsin D are located in the nonconserved central region. IGF-I and -II, but not the unrelated platelet-derived growth factor BB, were degraded by cathepsin D in a time and concentration-dependent manner. We speculate that the major functional site of cathepsin D is intracellular and may be involved 1) in the selected clearance either of IGFBP or IGFs via different endocytic pathways or 2) in the general lysosomal inactivation of the IGF system.  相似文献   

13.
14.
It is well established that insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3) and insulin are low in growth hormone deficiency, but due to their dependence on nutrition, they are elevated in healthy obese children. As the presence of growth hormone deficiency in Prader-Labhart-Willi syndrome (PWS) is still controversial, we studied insulin, IGF-I and IGFBP-3 levels in 19 children with PWS (age range 0.5-14.6 years). Serum concentrations of insulin (SDS: -0.7+/-0.9, P = 0.01) and IGF-I (SDS: -0.7+/-0.8, P = 0.002) were low, but IGFBP-3 (SDS: -0.3+/-1.2, P = 0.2) was normal compared to normal weight age-matched children. Since children with PWS are typically obese, insulin, IGF-I and IGFBP-3 levels should be compared to normal obese children who present increased levels of these hormones. In comparison to data of healthy obese children reported in the literature, not only IGF-I, but also IGFBP-3 levels are low and fasting insulin levels even very low, suggesting a growth hormone deficiency.  相似文献   

15.
Glioma tumour growth is associated with the expression of insulin-like growth factors I and II (IGFs) and of both type I and type II IGF receptors. It has also been shown that IGFs can stimulate proliferation of cultured glioma cells. We previously reported that histamine too can stimulate the growth of glioma cells in vitro. In this report, we study whether the histamine-induced growth of G47 glioma cells is mediated by the IGFs. We found that histamine stimulates the expression of both IGF-I and IGF-II mRNAs, as determined by a semiquantitative in situ hybridization analysis. Furthermore, incubation of G47 cells with histamine also induced cellular immunostaining for IGF-II. It could be shown that IGF-I-stimulated proliferation is inhibited by IGFBP-3, which decreases the availability of IGFs for binding to the IGF receptors, and by beta-galactosidase, which may decrease IGF binding to the type II IGF receptor, but is not inhibited by the anti-type I IGF receptor monoclonal antibody alphaIR3. However, neither IGFBP-3 nor beta-galactosidase nor alphaIR3 inhibited the histamine-induced proliferation. These results show that the growth-stimulatory effect of histamine is accompanied by the induction of IGFs. This histamine-induced growth stimulation is not mediated by activation of cell surface IGF receptors, although intracrine activation of type II IGF receptors may be involved.  相似文献   

16.
Stromal fibroblasts in the primate endometrium undergo dramatic morphological and biochemical changes in response to pregnancy. This transformation is characterized by the expression of insulin-like growth factor binding protein-1 (IGFBP-1). Stromal cells from the baboon endometrium of nonpregnant animals were cultured and subsequently treated with cytochalasin D to disrupt actin filaments. In response to cytochalasin D treatment, cells contracted and became rounded as early as 10 min after the initiation of treatment. When cytochalasin D was removed, cells reverted back to their original fibroblastic shape within 1 h. After cells were treated with cytochalasin D for 5 h, addition of (Bu)2cAMP and/or hormones (estradiol, medroxyprogesterone acetate, and relaxin) resulted in the expression of IGFBP-1 messenger RNA and protein within 24 h. Cells with an intact cytoskeleton did not express detectable levels of IGFBP-1 in response to hormones and/or (Bu)2cAMP. Furthermore, the addition of cycloheximide inhibited expression of IGFBP-1 in cytochalasin D-treated cells. Stromal cells were also isolated from early pregnant and simulated pregnant animals. Within 48 h, cells from both the pregnant and simulated pregnant animals produced IGFBP-1 in response to hormones and/or (Bu)2cAMP. In these studies, IGFBP-1 expression was also inhibited by cycloheximide. These studies suggest that induction of IGFBP-1 requires an intermediary protein and that alterations in the cytoskeleton may be involved.  相似文献   

17.
Fibroblast growth factors (FGF) elicit biological effects by binding to high affinity cell-surface receptors and activation of receptor tyrosine kinase. We previously reported that two NIH/3T3 derivatives, NR31 and NR33 (NR cells), express high levels of full-length FGF-1 and exhibit a complete spectrum of transformed phenotype. In the present study, we report that NR cells respond to the mitogenic stimulation of truncated FGF-1 but not to the full-length FGF-1. Incubation of the NR cells with either form of FGF-1 resulted in its binding to cell-surface FGF receptors, activation of mitogen-activated protein (MAP) kinase, and induction of c-fos and c-myc. These data demonstrate that the FGF receptor-mediated, MAP kinase-dependent signaling pathway is not defective in the NR cells. Our data further suggest that the activation of MAP kinase in response to full-length FGF-1 is not sufficient for mitogenesis. Subcellular distribution of exogenously added FGF-1 demonstrated that full-length FGF-1 fails to translocate to the nuclei of NR31 cells. Although the full-length FGF-1 was detected in the nuclear fractions of both NIH/3T3 and NR33 cells, its half-life is much shortened in NR33 than in NIH/3T3 cells. These observations suggest that non-responsiveness of the two NR cell lines may be due to defectiveness at different steps of nuclear translocation mechanism of FGF-1.  相似文献   

18.
The insulin-like growth factors (IGFs) have been implicated in the autocrine and/or paracrine growth of a number of tumor types, including lung tumors. Importantly, insulin-like growth factor-binding proteins (IGFBPs), which both enhance and inhibit the physiological and biological actions of the IGFs, have been shown to be secreted in vitro by a wide range of tumors. In particular, IGFBP-2 is frequently produced by human tumor cells, suggesting that this protein may be an important determinant of IGF action in tumors. In the present study, we investigated IGFBP-2 effects in lung tumor cells by examining the influence of IGFBP-2 on IGF-receptor interaction and the biological actions of IGF-I and IGF-II. Affinity cross-linking studies demonstrated expression of type-I and type-II IGF receptors on small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells and the presence of abundant membrane-associated IGFBP in SCLC cells but not in NSCLC cells. An antiserum specific for IGFBP-2 was used in immunoprecipitation and immunoblotting studies which demonstrated that the membrane-associated IGFBP identified by affinity cross-linking in SCLC cells is IGFBP-2. In NSCLC cells, both IGF-I and IGF-II bound predominantly to IGF-I receptors, whereas in SCLC cells binding was principally to surface-associated IGFBP-2. SCLC cells failed to respond to IGF-I and -II stimulation in a DNA synthesis assay. For NSCLC cells, IGF-II was a more potent stimulator of DNA synthesis than IGF-I. Soluble IGFBP-2 inhibited the binding of radiolabeled IGF-I and -II to both SCLC and NSCLC cells in a concentration-dependent manner and inhibited IGF-stimulated DNA synthesis in NSCLC cells. These observations indicate that both soluble and membrane-associated IGFBP-2 compete with IGF receptors for ligand binding and, thus, are likely to be important determinants of IGF responsiveness. The findings of the present study also indicate that the type-I receptor on NSCLC cells contains a high-affinity binding site for IGF-II which presumably mediates the biological effects of IGF-II in these cells, thereby implicating IGF-II in the autocrine/paracrine growth of NSCLC.  相似文献   

19.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNAand accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP.  相似文献   

20.
Phosphoinositides that are phosphorylated at the D3 position have been reported to activate an atypical, Ca2-independent protein kinase C (PKC) isoform designated PKC-zeta, and overexpression of this enzyme leads to monocytic differentiation. In this study, we cultured human HL-60 promyeloid cells with vitamin D3 and insulin-like growth factor-I (IGF-I), a 70-amino-acid peptide that activates phosphatidylinositol 3'-kinase (PI 3-kinase) in murine promyeloid cells. Two days later, the proportion of cells differentiating into macrophages in serum-free medium, as assessed by expression of the alpha-subunit of the beta2 integrin CD11b, increased from 5 +/- 1% to 25 +/- 3%. Addition of IGF-I increased the proportion of cells differentiating into CD11b-positive macrophages to 78 +/- 5%. In the absence of vitamin D3, IGF-I did not induce expression of CD11b (6 +/- 1%). The IGF-I-promoted macrophage differentiation was blocked specifically by preincubation of HL-60 cells with a mAb (alphaIR3) directed against the IGF type I receptor. Similarly, pretreatment of cells with either alphaIR3 or an IGF-binding protein, IGFBP-3, led to a 75% inhibition of CD11b expression when cells were cultured with vitamin D3 in serum-containing medium. IGF-I, but not vitamin D3, caused a sevenfold increase in the enzymatic activity of both PI 3-kinase and atypical PKC-zeta. Inhibition of IGF-I-inducible PI 3-kinase with either wortmannin or LY294002 abrogated the IGF-I-induced activation of PKC-zeta and totally blocked the enhancement in macrophage differentiation caused by IGF-I. These data establish that PKC-zeta is a putative downstream target of PI 3-kinase that is activated during IGF-I-promoted macrophage differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号