首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Photoresponsive DNA nanomaterials represent a new class of remarkable functional materials. By adjusting the irradiation wavelength, light intensity, and exposure time, various photocontrolled DNA‐based systems can be reversibly or irreversibly regulated in respect of their size, shape, conformation, movement, and dissociation/association. This Review introduces the most updated progress in the development of photoresponsive DNA‐based system and emphasizes their advantages over other stimuli‐responsive systems. Their design and mechanisms to trigger the photoresponses are shown and discussed. The potential application of these photon‐responsive DNA nanomaterials in biology, biomedicine, materials science, nanophotonic and nanoelectronic are also covered and described. The challenges faced and further directions of the development of photocontrolled DNA‐based systems are also highlighted.  相似文献   

2.
目的 对自感型功能结构的研究进展进行归纳和分析,并对其发展前景进行展望。方法 定义自感型功能结构的概念,分析自感型功能结构的设计流程,揭示自感型功能结构的内涵,并从敏感材料、制造方法、响应激励3个视角对自感型功能结构设计的研究进展进行分类,证明其可以通过元胞性能设计、基元构型制造和序构综合调控的设计方法进行制备并应用于实际场景中,实现结构—功能的一体化。结果归纳了自感型功能结构的设计与制造研究进展,总结了自感型功能结构的重点技术和在不同领域的突出性成果,结合自感型功能结构的概念内涵,对其在机械、材料、生物等领域的应用进行了展望。结论自感型功能结构可以对本体和环境的变化进行感知,按照设计好的特定方式发生功能或性能的变化,具有结构构型高效、感知对象多样、感知元件集成等特点,在相关领域中具有广阔的应用前景。  相似文献   

3.
Functional nanomaterials as nanodrugs based on the self-assembly of inorganics, polymers, and biomolecules have showed wide applications in biomedicine and tissue engineering. Ascribing to the unique biological, chemical, and physical properties of peptide molecules, peptide is used as an excellent precursor material for the synthesis of functional nanodrugs for highly effective cancer therapy. Herein, recent progress on the design, synthesis, functional regulation, and cancer bioimaging and biotherapy of peptide-based nanodrugs is summarized. For this aim, first molecular design and controllable synthesis of peptide nanodrugs with 0D to 3D structures are presented, and then the functional customization strategies for peptide nanodrugs are presented. Then, the applications of peptide-based nanodrugs in bioimaging, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) are demonstrated and discussed in detail. Furthermore, peptide-based drugs in preclinical, clinical trials, and approved are briefly described. Finally, the challenges and potential solutions are pointed out on addressing the questions of this promising research topic. This comprehensive review can guide the motif design and functional regulation of peptide nanomaterials for facile synthesis of nanodrugs, and further promote their practical applications for diagnostics and therapy of diseases.  相似文献   

4.
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in‐depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid‐related devices, recent developments, as well as present challenges and future prospects are also outlined.  相似文献   

5.
Laser ablation in liquid (LAL) has received considerable attention over the last decade, and is gradually becoming an irreplaceable technique to synthesize nanocrystals and fabricate functional nanostructures because it can offer effective solutions to some challenges in the field of nanotechnology. The goal of this review is to offer a comprehensive summary of recent developments of LAL in nanocrystal synthesis and nanostructure fabrication. First, we will introduce the fundamental processes of microsecond, nanosecond, and femtosecond LAL, and how the active species act differently in plasma, cavitation bubbles, and droplets in the different LAL processes. Second, a variety of LAL-based techniques for nanomaterials synthesis and processing are presented, such as electric-, magnetic-, and temperature-field LAL, as well as electrochemically assisted LAL, pulsed laser deposition in liquid, and laser writing of nanopatterns in liquid. Third, new progress in LAL-generated nanomaterials is described. Fourth, we emphasize five applications of LAL-generated nanomaterials that have emerged recently in the fields of optics, magnetism, environment, energy, and biomedicine. Finally, we consider the core advantages of LAL, the limitations of LAL and corresponding solutions, and the future directions in this promising research area.  相似文献   

6.
陈思思  潘琪  苏萌  宋延林 《包装工程》2022,43(3):189-201
目的概述印刷芯片的制备方法和研究现状,开拓印刷技术的研究思路和应用场景,为印刷芯片的发展提供参考。方法从印刷材料、印刷方法和芯片应用3个方面介绍近年来印刷芯片的研究进展,重点对比各种印刷方法的关键科学问题及特点,并且指出芯片印刷的发展方向。结果基于印刷方法在大面积制备、材料兼容性、绿色环保等方面的优势,印刷芯片在显示、能源、生物、智能包装等诸多方面快速发展,不过仍然面临高精度、规模化、功能集成方面的挑战。结论通过更好地调控印刷过程中液滴成型,构筑功能材料精细微纳结构,实现高精度器件与芯片全印刷制造。未来在实现智能、自动、互联化功能芯片制造的同时,发展绿色可持续印刷新策略。  相似文献   

7.
张艳  孙怡然  于飞  马杰 《复合材料学报》2021,38(8):2418-2427
细菌纤维素(Bacterial cellulose, BC)是一种由微生物发酵产生的细胞外多糖,作为一种新型的环境友好生物材料,细菌纤维素具有高纯度、高吸水性,优异的机械强度及生物相容性高等优点,在生物医学、化工及食品等诸多领域展现出广阔的应用前景。本文系统性地介绍了BC的结构和特性,对BC的制备工艺和影响因素进行了总结,并分析了化学改性、原位改性和纳米材料复合改性等改性方法对BC的结构与特性的影响,对BC在环境处理技术(吸附、过滤、光催化)中的应用进展进行了概述,最后对BC的研究进展及其发展方向进行了总结和展望。   相似文献   

8.
This article introduces an interdisciplinary subject of bioelectrodynamics in living organisms and its related research challenges and opportunities. Bioelectrodynamics in living organisms is aimed to reveal critical roles of electromagnetism and mechanics in biology, to correlate biophysical functions of living organisms with biochemical processes at the cellular level, and to introduce theoretical basis and methodology, such as modeling and simulations, for stimulating technical innovations and promoting technology development in biomedicine as well as for the study of human healthcare issues related to environments among others in our modern society. The article reviews some important issues in bioelectrodynamic modeling. This includes the modeling of living cells, blood, bones and soft tissues that may have unique properties, such as active control, regulation and remodeling capabilities that are completely different from those of conventionally man-made materials. Possible biological effects and potential biomedical usages of endogenous and exogenous electromagnetic fields and mechanical stresses in living organisms are also reviewed, which indicate promising future of biomedical imaging and therapeutic methods based on bioelectrodynamic techniques. The fact that living organisms may have well-organized structures, actively controlled actions and responses, extremely sensitivity in electromagnetic fields and mechanical actions, and amazing signal amplification functions may not only cause complexity and variety of the biological world, but also create opportunities for technical innovations in biomedicine to improve future quality of human life.  相似文献   

9.
Polymers have gained a remarkable place in the biomedical field as materials for the fabrication of various devices and for tissue engineering applications. The initial acceptance or rejection of an implantable device is dictated by the crosstalk of the material surface with the bioentities present in the physiological environment. Advances in microfabrication and nanotechnology offer new tools to investigate the complex signaling cascade induced by the components of the extracellular matrix and consequently allow cellular responses to be tailored through the mimicking of some elements of the signaling paths. Patterning methods and selective chemical modification schemes at different length scales can provide biocompatible surfaces that control cellular interactions on the micrometer and sub‐micrometer scales on which cells are organized. In this review, the potential of chemically and topographically structured micro‐ and nanopolymer surfaces are discussed in hopes of a better understanding of cell–biomaterial interactions, including the recent use of biomimetic approaches or stimuli‐responsive macromolecules. Additionally, the focus will be on how the knowledge obtained using these surfaces can be incorporated to design biocompatible materials for various biomedical applications, such as tissue engineering, implants, cell‐based biosensors, diagnostic systems, and basic cell biology. The review focusses on the research carried out during the last decade.  相似文献   

10.
Fluorescent polymer particles have witnessed an increasing interest in recent years, owing to their fascinating physicochemical properties as well as wide-ranging applications. In this review, the state-of-the-art research progress of fluorescent polymer particles in the past five years is summarized. First, the synthesis protocols for fluorescent polymer particles, including emulsion polymerization, precipitation polymerization, dispersion polymerization, suspension polymerization, nanoprecipitation, self-assembly, and post-polymerization modification, are presented in detail. Then, the applications of the resulting beguiling particles in anticounterfeiting, chemical sensing, and biomedicine, are illustrated. Finally, the challenges and opportunities that exist in the field are pointed out. This review aims to offer important guidance and stimulate more research attention to this rapidly developing field.  相似文献   

11.
Hydrogels have extremely high moisture content, which makes it very soft and excellently biocompatible. They have become an important soft material and have a wide range of applications in various fields such as biomedicine, bionic smart material, and electrochemistry. Carbon dot (CD)-based hydrogels are based on carbon dots (CDs) and auxiliary substances, forming a gel material with comprehensive properties of individual components. CDs embedding in hydrogels could not only solve their aggregation-caused quenching (ACQ) effect, but also manipulate the properties of hydrogels and even bring some novel properties, achieving a win–win situation. In this review, the preparation methods, formation mechanism, and properties of CD-based hydrogels, and their applications in biomedicine, sensing, adsorption, energy storage, and catalysis -are summarized. Finally, a brief discussion on future research directions of CD-based hydrogels will be given.  相似文献   

12.
新型功能材料阳离子纤维素的研究进展   总被引:1,自引:0,他引:1  
总结了制备阳离子纤维素的主要方法,介绍了纤维素阳离子化改性所用的单体类型,评价了制备阳离子纤维素方法的特点。综述了国内外阳离子纤维素应用于日化用品、纺织印染、生物医学和环境保护等领域的研究进展,并讨论了该功能材料的发展趋势,指出阳离子纤维素将会在医疗和环保领域得到广泛的应用。  相似文献   

13.
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.  相似文献   

14.
Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.  相似文献   

15.
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell‐microenvironment interactions is presented and they are highlighted them as well‐controlled platforms for mechanistic studies of mechano‐sensitive and ‐responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed.  相似文献   

16.
With the increasing interests of using graphene and its derivatives in the area of biomedicine, the systematic evaluation of their potential risks and impacts to biological systems is becoming critically important. In this work, we carefully study how surface coatings affect the cytotoxicity and extracellular biodegradation behaviors of graphene oxide (GO) and its derivatives. Although naked GO could induce significant toxicity to macrophages, coating those two‐dimensional nanomaterials with biocompatible macromolecules such as polyethylene glycol (PEG) or bovine serum albumin (BSA) could greatly attenuate their toxicity, as independently evidenced by several different assay approaches. On the other hand, although GO can be gradually degraded through enzyme induced oxidization by horseradish peroxidase (HRP), both PEG and BSA coated GO or reduced GO (RGO) are rather resistant to HRP‐induced biodegradation. In order to obtain biocompatible functionalized GO that can still undergo enzymatic degradation, we conjugate PEG to GO via a cleavable disulfide bond, obtaining GO‐SS‐PEG with negligible toxicity and considerable degradability, promising for further biomedical applications.  相似文献   

17.
Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.  相似文献   

18.
Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell–cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions.  相似文献   

19.
Many challenges for advanced sensitive and noninvasive clinical diagnostic imaging remain unmatched. In particular, the great potential of magnetic nano‐probes is intensively discussed to further improve the performance of magnetic resonance imaging (MRI), especially for cancer diagnosis. Based on recent achievements, here the concepts of magnetic nanoparticle‐based MRI contrast agents and tumor‐specific imaging probes are critically summarized. Advances in their synthesis, biocompatible chemical and biofunctional surface modifications, and current strategies for further developing them into multimodality imaging probes are discussed. In addition, how engineered versus unintended surface coatings such as protein coronas affect the biocompatibility and performance of MRI nano‐probes is also considered. To stimulate progress in the field, future strategies and relevant challenges that still need to be resolved in the field conclude this review.  相似文献   

20.
Mechanical interactions between cells and extracellular matrix are known to regulate cellular processes ranging from cell signaling, spreading, migration, tissue morphogenesis, to cell differentiation, which may even alter cell phenotype and change physical properties of cells. Moreover, understanding cell contact, adhesion, and cellular mechanotransduction has great significance to cell cultures, muscle growth, and wound healing, and some related diseases such as cancer and fibrosis. For these reasons, cell mechanobiology research has become a focal point in the field of molecular and cell biology research receiving much attention from both biologists and biophysicists in recent years. In fact, cellular mechanobiology is an emerging multidisciplinary field that encompasses molecular cell biology, cell developmental biology, bioengineering and biophysics, and soft matter physics and mechanics. In this document, we would like to present an overview on the recent research developments on mechanics of cells and cellular mechanotransduction through the viewpoint of soft matter physics and biophysics, particularly from the perspective of mechanics of soft materials. Specifically, we review the recent research activities in mechanics of soft matter contact and cell behaviors involving experimental observations, mathematical modeling, and computational methods. Finally, the paper provides author’s perspectives on future issues and challenges on modeling and computational aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号