首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Analysis of isothermal grain growth kinetics of nanocrystalline Fe-9Cr-1Mo and Fe-9Cr-1W-based ferritic oxide dispersion strengthened alloys is reported. Fe-9Cr-1Mo-0.25Ti-0.5Y2O3 alloy exhibited ~900 and ~250 pct enhancement in grain-coarsening resistance at 1073 K (800 °C) in comparison with Fe-9Cr-1Mo-0.5Y2O3 alloy and Fe-9Cr-1W-0.5Y2O3 alloy, respectively. Comparison of grain growth time exponents also revealed that addition of Ti and Y2O3 to nanocrystalline Fe-9Cr alloy has significantly enhanced the grain growth resistance. This is attributed to the possible presence of Y-Ti-O-based nanoclusters (<5 nm).  相似文献   

2.
The oxidation behavior of some Ni-Cr-Al alloys at high temperatures   总被引:1,自引:0,他引:1  
Oxidation of ternary Ni-Cr-Al alloys containing different Cr/Al ratios has been studied in the temperature range 800° to 1300°C. Most of the studies were performed in 1 atm oxygen or air, but the oxygen pressure dependence for one of the alloys was also investigated. The experimental methods included thermogravimetric measurements of oxidation rates and studies on reacted specimens by means of X-ray diffraction, metallographic techniques, electron microprobe analysis, and electron microscopy. In general, the oxidation rates decrease faster with time than that for an ideal parabolic behavior. The major reaction products were NiO, Cr2O3,α-Al2O3, and Ni(Cr,Al)2O4. The relative amounts of these were a function of composition, temperature, oxygen pressure, and reaction time. The Ni-9Cr-6Al alloy has the best oxidation resistance due to the formation ofα-Al2O3 at all temperatures investigated. The oxidation mechanism of the alloy is discussed.  相似文献   

3.
Nb-20Mo-15Si-25Cr (25Cr alloy) and Nb-20Mo-15Si-25Cr-5B (25Cr/5B alloy) alloys have been subjected to oxidation in air for 24 hours from 973 K to 1673 K (700 °C to 1400 °C). Even though B additions do not improve oxidation resistance at temperatures higher than 1473 K (1200 °C), the lower temperature oxidation resistance is superior with B by influencing the microstructure. Porous oxide scale development at lower temperatures has been attributed to the dominant growth of Nb2O5 and the vaporization of MoO3. An intermediate oxidation layer is developed between the scale and the metal for the 25Cr/5B alloy at temperatures above 1173 K (900 °C). Scale densification at elevated temperatures results in higher stress development as a result of the mismatch of coefficients of thermal expansion, ultimately resulting in oxide spallation.  相似文献   

4.
Oxidation protective silicide coating on Mo-Si-B alloys   总被引:1,自引:0,他引:1  
A MoSi2 coating was successfully formed on a Mo-9Si-18B alloy, consisting of Mo5SiB2 (T2) and Mo solid solution (Mo ss ) phases, using pack cementation with Si. Isothermal and cyclic oxidation tests of pack-cemented Mo-9Si-18B alloys were performed at 1300 °C and 1500 °C. Steady-state oxidation rates at both temperatures are almost equal to those of pure MoSi2. The MoSi2 layer is completely transformed into Mo5Si3 (T1) containing B after oxidation at 1500 °C for 24 hours. Thermal expansion of the T1 phase is anisotropic, but a [001] texture in the growth direction for the columnar grains in the T1 layer reduces thermal stresses generated around the phases. Evolution of T1 layers during oxidation between 1300 °C and 1500 °C was investigated; their growth rate constants and the interdiffusion coefficient of Mo and Si in the Mo-Si-B system have been evaluated and compared with those in the binary Mo-Si system. Furthermore, we have studied phase transformations in a simpler system MoSi2 vs T2 using MoSi2/T2 diffusion couples. Layers of T1 and MoB + T1 were formed in the diffusion zone during oxidation at temperatures between 1400 °C and 1600 °C. This behavior is different from that of the pack-cemented Mo-9Si-18B alloy. Pack-cemented T2 single crystals show a diffusion structure similar to that of MoSi2/T2 diffusion couples, but the ratio of layer thickness is different. Based on these diffusion results, a method for extending the lifetime of the MoSi2 layer is proposed. This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.  相似文献   

5.
Three γ + β NiCoCrAlY alloys (a cast alloy, a laser-surface-melted (LSM) alloy, and a coating as deposited by electron beam-physical vapor deposition (EB-PVD)) with similar average composition (Ni-20Co-19Cr-24Al-0.2Y in at. pct), but with different microstructures prior to oxidation, were oxidized for 0.5 and 1 hours at 1373 K in an Ar 20 vol pct O2 atmosphere (i.e., at a partial oxygen pressure of 20 kPa). It was found that on the alloy with β precipitates larger than 20 μm, the oxide layer was nonuniform in thickness, and had a laterally inhomogeneous composition and phase constitution. In this case, the oxide layer developed on top of the γ phase was thicker than that formed on top of the β phase and consisted of a NiCr2O4/Cr2O3 outer and an α-Al2O3 inner layer. For the thinner oxide formed on top of the β phase, the outer layer was constituted of a Cr and Co containing NiAl2O4 spinel and the inner layer also consisted of α-Al2O3. For the alloys with β precipitates smaller than 3 μm, a uniform and laterally homogeneous oxide formed, consisting of a Cr and Co containing NiAl2O4 outer layer on top of an α-Al2O3 inner layer. After oxidation, Y was distributed as numerous, small precipitates within the oxide layer for a homogeneous Y distribution prior to oxidation, or as a few, very large pegs along the γ/β phase boundaries of the alloy for an inhomogeneous Y distribution prior to oxidation. The performance of the alloys upon thermal cycling was improved for smaller β precipitates and for a more homogeneous Y distribution in the alloy prior to oxidation.  相似文献   

6.
The microstructures of as-cast and heat-treated biomedical Co-Cr-Mo (ASTM F75) alloys with four different carbon contents were investigated. The as-cast alloys were solution treated at 1473 to 1548 K for 0 to 43.2 ks. The precipitates in the matrix were electrolytically extracted from the as-cast and heat-treated alloys. An M23C6 type carbide and an intermetallic σ phase (Co(Cr,Mo)) were detected as precipitates in the as-cast Co-28Cr-6Mo-0.12C alloy; an M23C6 type carbide, a σ phase, an η phase (M6C-M12C type carbide), and a π phase (M2T3X type carbide with a β-manganese structure) were detected in the as-cast Co-28Cr-6Mo-0.15C alloy; and an M23C6 type carbide and an η phase were detected in the as-cast Co-28Cr-6Mo-0.25C and Co-28Cr-6Mo-0.35C alloys. After solution treatment, complete precipitate dissolution occurred in all four alloys. Under incomplete precipitate dissolution conditions, the phase and shape of precipitates depended on the heat-treatment conditions and the carbon content in the alloys. The π phase was detected in the alloys with carbon contents of 0.15, 0.25, and 0.35 mass pct after heat treatment at high temperature such as 1548 K for a short holding time of less than 1.8 ks. The presence of the π phase in the Co-Cr-Mo alloys has been revealed in this study for the first time.  相似文献   

7.
Effect of 1% Zr on oxidation behaviour of Fe-15 Cr-4 Al alloy under isothermal conditions in air, O2 and O2-10% H2O environments in the temperature range 1000–1150°C was investigated. The effect of zirconium concentration was studied at 1 200°C in air. Oxidation rate increases with increase in zirconium concentration. Parabolic rate of oxidation was observed. Limited study on cyclic oxidation was carried out at 1150°C in air. The cycle consisted of one hour holding at isothermal temperature followed by half an hour air cooling. The oxidised samples were examined by X-Ray diffractometry, SEM, EDAX. Extensive spalling was observed in the base alloy, Fe-15 Cr-4 Al in all environments. Zirconium additions eliminated the spalling of the scale. The EDAX analysis of a spalled region shows the presence of iron and chromium while the unspalled region is aluminium rich. A common structural feature, localised formation of granules/nodules was observed in the scale of zirconium containing alloys in all the environments. The number of granules increased with increase in zirconium concentration and was observed to be a maximum in 1% Zr and also increases with increasing temperature. The observations reveal that 1% Zr alloy shows lower oxidation rate in O2-H2O environment under isothermal conditions. X-Ray diffraction analysis shows the additional presence of Fe2O3 and Cr2O3 in α-Al2O3 scale which have not been detected in the α-Al2O3 scale formed in other environments, air and O2. 0.2% Zr is most effective in increasing oxidation resistance of Fe-15 Cr-4 Al alloy both under isothermal and cyclic oxidation conditions.  相似文献   

8.
Hardness measurements, dilatometry, internal friction measurements, Mössbauer spectroscopy and transmission electron microscopy are utilized in order to study the effect of tempering on the microstructure of a stainless martensitic steel containing 15% Cr, 1% Mo and 0.6% N. A similar carbon steel containing 15% Cr, 1% Mo and 0.6% C is used for comparison. Tempering of alloy Fe-15Cr-1Mo-0.6N in the low temperature range of 353-473 K leads to formation of hexagonal ?-nitride (Fe,Cr)2N, which is followed by precipitation of the orthorombic ?-nitride (Fe,Cr)2N at temperatures of 573-773 K. The hexagonal nitride Cr2N is precipitated at 923 K and preferably formed at grain boundaries. The alloy Fe-15Cr-1Mo-0.6C shows the expected tempering behaviour. ?-carbide (Fe,Cr)2C and cementite (Fe,Cr)3C are precipitated during low temperature ageing, followed by the formation of Cr7C3 carbides after the temperature has risen to 873 K. With a similar interstitial content the amount of retained austenite in the nitrogen martensite is nearly twice as high as in the carbon one. Furthermore, the thermal stability of the retained austenite of the nitrogen alloy is substantially higher than that of the carbon steel.  相似文献   

9.
The microstructure and surface stability of two experimental W-rich Ni-based alloys have been studied at 1273 K (1000 °C) in an impure-He environment containing only CO and CO2 as impurities. The alloy Ni-2.3Al-12Cr-12W contained 0.08 wt pct carbon in solution, whereas the second alloy Ni-2.3Al-3Mo-12Cr-12Co-12W contained M6C carbides at the same carbon level. Both alloys, which were preoxidized with ~2.3 μm Cr2O3 layer, were decarburized completely within 50 hours of exposure to the helium gas mixture at 1273 K (1000 °C) via the following chromia-assisted decarburization reaction: Cr2O3 (s) + 3Calloy (s) → 2Cr (s) + 3CO (g). Microstructural observations, bulk carbon analysis, and microprobe measurements confirmed that the carbon in solid solution reacted with the surface chromium oxide resulting in the simultaneous loss of chromia and carbon. The Cr produced by the decomposition of the Cr2O3 diffused back into the alloy, whereas CO gas was released and detected by a gas chromatograph. Once the alloy carbon content was reduced to negligible levels, subsequent exposure led to the uninterrupted growth of Cr2O3 layer in both alloys. In the preoxidized alloys, chromia-assisted decarburization rates were slower for an alloy containing carbides compared with the alloy with carbon in solid solution only. The formation of Cr2O3 is shown to be the rate-limiting step in the chromia-assisted decarburization reaction. Exposure of as-fabricated alloys to the impure-He environment led to the formation of a thin layer of Al2O3 (<1 μm) between the substrate and surface Cr2O3 oxide that inhibited this decarburization process by acting as a diffusion barrier.  相似文献   

10.
A ∼ 150-nm-thick coating layer consisting of α-Al2O3 as the major phase with a minute amount of θ-Al2O3 was deposited on the surface of a single-crystal Ni-based superalloy by chemical vapor deposition (CVD). Within 0.5 hours of oxidation at 1150 °C, the resulting thermally grown oxide (TGO) formed on the coated alloy surface underwent significant lateral grain growth. Consequently, within this time scale, the columnar nature of the TGO became established. After 50 hours, a network of ridges was clearly observed on the TGO surface instead of equiaxed grains typically observed on the uncoated alloy surface. Comparison of the TGO morphologies observed with and without the CVD-Al2O3 layer suggested that the transient oxidation of the alloy surface was considerably reduced. Also, the CVD-Al2O3 layer significantly reduced the growth rate of the TGO and improved its spallation resistance, while slowing the internal oxidation of Ta-rich areas that were present in the superalloy as-casting defects. These results demonstrated that this thin α-Al2O3 coating could be used as a means of favorably altering the TGO morphology and growth kinetics for no bond coat thermal barrier coating (TBC) applications.  相似文献   

11.
研究了热等静压态NiAl-28Cr-5.5Mo-0.5Hf-0.012P合金的高温蠕变行为。结果表明:实验合金具有较短的减速蠕变阶段和相当长的稳态蠕变阶段以及很高的蠕变应变;在研究的实验条件范围内,合金的蠕变变形机制为低温高应力下的位错粘滞滑移控制和高温低应力下的位错攀移控制;蠕变后合金的显微组织变化不大,表明蠕变断裂受孔洞及裂纹的形成和扩展所控制,而且蠕变断裂行为符合修正后的Monkman-Grant规律:Intf+0.775lnε=1.104。  相似文献   

12.
High-carbon iron alloys containing carbide formers of chromium and molybdenum were rapidly solidified by means of a single roller method. In the alloy containing a high level of both chromium and molybdenum (10Cr-5Mo) and a critical carbon content of about 4 pct, the metastable phases,ε phase and austenite, are retained after solidification. Theε phase could contain a large amount of carbon in solid solution so that during tempering at about 900 K, it decomposes to very fine ferrite and carbide, which bring about an enhanced hardness of 1300 DPN. Even after tempering at a high temperature around 1100 K, the hardness hardly deteriorates due to a remarkable dispersion of fine M3C and M7C3 carbides. Thus, coaddition of chromium and molybdenum is effective in obtaining high hardness. Formerly Graduate Student, Kyushu Institute of Technology  相似文献   

13.
A chemical vapor deposition (CVD) procedure was developed for preparing a high-quality α-Al2O3 coating layer on the surface of a single-crystal Ni-based superalloy using AlCl3, CO2 and H2 as precursors. A critical part of this procedure was a short-time preoxidation step (1 min) with CO2 and H2 in the CVD chamber, prior to introducing the AlCl3 precursor. Without this preoxidation step, extensive whisker formation was observed on the alloy surface. Characterization results showed that the preoxidation step resulted in the formation of a continuous oxide layer (∼50 nm) on the alloy surface. The outer part of this layer (∼20 nm) appeared to contain mixed oxides, whereas the inner part (∼30 nm) mainly consisted of α-Al2O3 grains with θ-Al2O3 as a minor phase. We observed that the nucleation of α-Al2O3 in the preoxidized layer was promoted by (1) rapid heating (10 seconds) of the alloy surface to the temperature region where α-Al2O3 was expected to nucleate; (2) the low oxygen pressure environment of the preoxidation step, which kept the rate of oxidation low; and (3) contamination of the reactor chamber with HfCl4. The preoxidized layer served as an effective diffusion barrier for mitigating the interaction with some of the alloying elements such as Co and Cr with the CVD precursors and eliminating whisker formation on the alloy surface.  相似文献   

14.
The results of an in situ synthesis of refractory metal–intermetallic composite (RMIC), Mo-16Cr-4Si (wt pct) multiphase alloy and its characterization, are presented in this study. The alloy was prepared from the oxides of molybdenum and chromium by their co-reduction with Si metal powder as a reductant. The exothermic nature of these reactions resulted in the formation of consolidated composite as a product in a single step. The thermodynamic aspects of exothermic reactions were studied by thermogravimetry/differential thermal analyzer. As-reduced alloys were remelted by arc melting and heat treated to obtain a homogenous microstructure. The evolution of phases and microstructures qA studied by X-ray diffraction, scanning electron microscopy, and energy-dispersive spectrum analysis. The multiphase alloy consisted of Mo3Si and discontinuous (Mo, Cr) (ss) phase with a volume percentage of 28 pct. The synthesized alloys were characterized with respect to composition, phases, microstructure, hardness, and oxidation behavior.  相似文献   

15.
This paper presents the results on in-situ synthesis of refractory metal-intermetallic composites (RMICs), Mo-16Cr-4Si and Mo-11Cr-9Si (wt.%) multiphase alloys and their characterization. The alloys were prepared from the oxides of molybdenum and chromium by their coreduction with Si as reductant. Exothermic nature of the synthesis reactions resulted in the formation of consolidated composite as a product in a single step. As-reduced alloys were remelted by arc melting and heat treatment was given. The evolution of phases and the microstructure were studied by XRD, SEM, and EDS analysis. The multiphase microstructure consist of the silicide phases (Mo,Cr)3Si + (Mo,Cr)5Si3 for hypereutectic and (Mo,Cr)3Si phase distributed in bcc matrix comprising essentially a solid solution of (Mo,Cr) for hypo-peritectic composition. Comparative studies of the synthesized alloys were also carried out to the composition, phases, microstructure, hardness and their oxidation behavior.  相似文献   

16.
The effect of the addition of Si or Mn to ASTM F75 Co-28Cr-6Mo-0.25C alloys on precipitate formation as well as dissolution during solution treatment was investigated. Three alloys—Co-28Cr-6Mo-0.25C-1Si (1Si), Co-28Cr-6Mo-0.25C-1Mn (1Mn), and Co-28Cr-6Mo-0.25C-1Si-1Mn (1Si1Mn)—were heat treated from 1448 K to 1548 K (1175 °C to 1275 °C) for a holding time of up to 43.2 ks. In the case of the as-cast 1Si and 1Si1Mn alloys, the precipitates were M23C6-type carbide, η phase (M6C-M12C–type carbide), and π phase (M2T3X-type carbide with a β-Mn structure), while in the case of the as-cast 1Mn alloy, M23C6-type carbide and η phase were detected. The 1Si and 1Si1Mn alloys required longer heat-treatment times for complete precipitate dissolution than did the 1Mn alloys. During the solution treatment, blocky dense M23C6-type carbide was observed in all the alloys over the temperature range of 1448 K to 1498 K (1175 °C to 1225 °C). At the heat-treatment temperature of 1523 K (1250 °C), starlike precipitates with stripe patterns—comprising M23C6-type carbide and metallic face-centered-cubic (fcc) γ phase—were detected in the 1Si and 1Si1Mn alloys. A π phase was observed in the 1Si and 1Si1Mn alloys heat treated at 1523 K and 1548 K (1250 °C and 1275 °C) and in the 1Mn alloy heat treated at 1548 K (1275 °C); its morphology was starlike-dense. The addition of Si appeared to promote the formation of the π phase in Co-28Cr-6Mo-0.25C alloys at 1523 K and 1548 K (1250 °C and 1275 °C). Thus, the addition of Si and Mn affects the phase and morphology of the carbide precipitates in biomedical Co-Cr-Mo alloys.  相似文献   

17.
The NiAl-28Cr-5.5Mo-0.5Hf eutectic alloy was prepared by the suction casting (SC) technique and subsequent hot isostatic pressing (HIP) treatment, and tested for compressive strength and fracture behavior in the temperature range of 300 to 1373 K. The microstructure of suction-cast alloy is characterized by fine interlamellar spacing, large area fraction of eutectic cell, and fine Heusler (Ni2AlHf) phase distributed semicontinuously at the cell boundaries. After HIP treatment, Ni2AlHf phase at the cell boundaries is transformed into Hf solid solution phase and distributed homogeneously within the NiAl matrix. Compared with the conventionally cast alloy, the room-temperature compressive strain and elevated temperature strength of suction-cast alloy are enhanced markedly after HIP treatment. The reason is that the HIP treatment causes Hf solid solution phase to distribute homogeneously and then strengthens the NiAl matrix.
J. T. Guo (Professor)Email:
  相似文献   

18.
The Y modification of a two-phase (γ+α 2) TiAl-(Mn,Mo,C) alloy was studied with an aim to improve, mainly, the oxidation resistance and the mechanical properties in a high-temperature air environment. The experimental alloy was prepared by the elemental powder metallurgy (EPM) method. The addition of up to 0.6 at. pct Y resulted in a significant improvement in tensile properties and compressive yield strength and an anomalous yielding phenomenon withal. Two structural characteristics were identified: first, microstructural refinement in terms of the grain size as well as the interlamellar spacing, and second, precipitation of fine oxides that might scavenge harmful oxygen. Deformation was found to be mainly provided by 1/2<110] ordinary dislocations and a much lesser amount of <011] superdislocations as compared to what has been reported in other (γ+α 2) TiAl alloys. The oxidation resistance of the experimental alloy was evaluated by air-exposure tests at 800 °C, from which the oxidation kinetics and the morphological and phase characteristics of the oxide scales were analyzed. With a Y addition, the constituents of the oxide scale changed from those of the Y-free alloy. In the case of the Y-free alloy, the oxide scale which formed upon extended air exposure (350 hours) at 800 °C consisted of a mixture of TiO2 and α-Al2O3. In the case of the alloy modified with Y (0.6 at. pct), however, the oxide scale formed in an identical environment was considerably different: it consisted of a complex mixture of TiO2, α-Al2O3, Y2O3, and Al5Y3O12. The formation of the multiphase (Y,Al)O-rich oxide scale impedes the oxygen transport and the thermal-expansion stress in the Al2O3 layer. It is also suggested that a Y addition reduces the oxygen solubility and concentration of oxygen vacancices in the TiO2 layer. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

19.
Nb-25Cr-20Mo-15Si-10B (compositions in at pct) and Nb-25Cr-20Mo-15Si-15B alloys were exposed to air for a maximum period of 2 weeks under static and cyclic conditions to determine oxidation response. Oxidation was carried out at temperatures of 973 K, 1173 K, 1373 K, and 1573 K (700 °C, 900 °C, 1100 °C, and 1300 °C). Results of long-term cyclic oxidation show an increase in oxidation resistance with an increase in boron content. Pesting has been observed at 973 K (700 °C) in the 10B alloy in cyclic and static modes of oxidation. Comparative analysis of oxide formation is done by the weight gain per unit surface area method. The alloys and their oxides are characterized by X-ray diffraction, scanning electron microscopy, and X-ray mapping.  相似文献   

20.
Activities in the spinel solid solution Fe X Mg1−X Al2O4 saturated with α-Al2O3 have been measured for the compositional range 0<X<1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + Fe X Mg1−X Al2O4+α-Al2O3//(Y2O3)ThO2/(CaO)ZrO2//Fe + FeAl2O4+α-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult’s law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: ΔG E=−1990 X(1−X) J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + Fe X Mg1−X Al2O4+α-Al2O3 and Fe + Fe y Mg1−Y O+Fe X Mg1−X Al2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号