首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High temperatures generally affect materials in some form. In this regard, the capability to perform nanoscale measurements at elevated temperatures opens up new possibilities for investigating the temperature dependence of materials’ mechanical properties. Particularly, the responses of aluminum’s different mechanical properties to indentation at various temperatures have been studied experimentally. In this paper, aluminum response to different room temperatures was examined. The behaviors of a single crystal aluminum during loading and unloading were observed. Nanoindentation experiments on a single crystal aluminum (100) sample at temperatures of 265 K and 388 K were performed with different loading conditions. At the start of the first burst of the dislocation glide, which was indicated by a sudden increase in displacement with no increase in loading, evidence of plastic properties and softening effects on aluminum was identified. The ductile to brittle transition was observed at temperatures below 273 K. Generally, there was a significant increase in the penetration depth and a decrease in hardness, elastic modulus, and elastic recovery as the testing temperature increased.  相似文献   

2.
An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storage materials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element lenses. For combinatorial investigations, up to 19 individual powder samples can be loaded into the optical cell at one time. This cell design is also compatible with thin-film samples. To demonstrate the capabilities of the cell, in situ measurements of the Ca(BH(4))(2) and nano-LiBH(4)-LiNH(2)-MgH(2) hydrogen storage systems at elevated temperatures and pressures are reported.  相似文献   

3.
We present a versatile system for the preparation of oxide crystal surfaces in the ultra-high vacuum (UHV) at temperatures up to 1300 K. Thermal treatment is accomplished by direct current heating of a tantalum foil in contact with the oxide sample. The sample temperature is measured by a thermocouple at a position close to the crystal and its reading is calibrated against the surface temperature determined by a second thermocouple temporarily attached to the surface. The design of the sample holder is based on a transferable plate originally developed for a commercial UHV scanning probe microscope. The system is, however, also suitable for the use with electron spectroscopy or electron diffraction based surface analytical techniques. We present results for the high-temperature preparation of CeO(2)(111) surfaces with atomically flat terraces exhibiting perfect atomic order and cleanliness as revealed by non-contact atomic force microscopy (NC-AFM) imaging. NC-AFM imaging is, furthermore, used to demonstrate the temperature-controlled aggregation of gold atoms on the CeO(2)(111) surface and their evaporation at high temperatures.  相似文献   

4.
Elevated temperature mechanical and tribological properties can be more relevant for practical wear situations than corresponding measurements at room temperature. However, high temperature nanomechanics and nanotribology is highly challenging experimentally. To overcome these challenges the NanoTest*** has been developed with active heating of the indenter and sample with resistive heaters, horizontal loading, patented thermal control method and stage design. By separately actively heating*** and controlling the temperatures of indenter and sample their temperatures can be precisely matched so that there is no heat flow and minimal/no thermal drift during the high temperature indentation,*** and measurements can be performed as reliably as at room temperature. Above 500 °C it is beneficial to use a cubic Boron Nitride indenter with gas purging to limit oxidation of samples. To achieve higher temperatures without indenter or sample oxidation an ultra-low drift high temperature vacuum nanomechanics/tribology system capable of testing to*** much higher temperatures has been recently developed (NanoTest Xtreme). The influence of time-dependent deformation on elevated temperature nanomechanical behaviour is discussed, using published results in Argon on glass-ceramic solid oxide fuel cell seal materials and previously unpublished nanoindentation measurements on single crystal silicon and polycrystalline tungsten using the NanoTest Xtreme in vacuum at temperatures up to 950 °C. Studies of the elevated temperature nano-/micro-tribological*** behaviour of wear-resistant*** nitride-based and MAX-phase coatings are also briefly reviewed.  相似文献   

5.
We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.  相似文献   

6.
The purpose of this study was to investigate the friction and wear behavior of single crystal superalloys at elevated temperatures. Pin-on-plate experiments were conducted using a custom-built high-temperature fretting/wear apparatus. Measurements were performed on two single crystal Ni-based alloys and Waspaloy® (used as a baseline material). The coefficient of friction for the single crystal materials (i.e., during running-in and steady state) was lower compared to the Waspaloy®. In addition, the experiments showed that the friction coefficient of the single crystal is dependent on the crystallographic plane; the friction coefficient was lower for the tests on the {100} plane compared to the {111} plane. The wear behavior was aligned with the friction behavior, where the single crystal Ni-based alloys showed slightly higher wear resistance compared to the Waspaloy®. Ex situ analysis by means of FIB/SEM and XPS analysis revealed the formation of Co-base metal oxide layer on the surface of the single crystal alloy. Similarly, a Co-base oxide layer is observed on the counterface providing a self-mated oxide-on-oxide contact and thus lower friction and wear compared to the Waspaloy®.  相似文献   

7.
A new diagnostic for measuring Bragg diffraction of petawatt-generated high-energy x rays off a laser-compressed crystal was designed and tested successfully at the Omega EP laser facility on static Mo and Ta (111) oriented single crystal samples using a 17.5 keV Mo?Kα backlighter. The Bragg diffraction imager consists of a heavily shielded enclosure and a precisely positioned beam block attached to the enclosure by an aluminum arm. Fuji image plates are used as the x-ray detectors. The diffraction from Mo and Ta (222) crystal planes was clearly detected with a high signal-to-noise. This technique will be applied to shock- and quasi-isentropically loaded single crystals on the Omega EP laser.  相似文献   

8.
In-situ heating experiments have been conducted at temperatures of approximately 1200 K utilising a new design of scanning electron microscope, the CamScan X500. The X500 has been designed to optimise the potential for electron backscatter diffraction (EBSD) analysis with concomitant in-situ heating experimentation. Features of the new design include an inclined field emission gun (FEG) column, which affords the EBSD geometrical requirement of a high (typically 160 degrees) angle between the incoming electron beam and specimen surface, but avoids complications in heating-stage design and operation by maintaining it in a horizontal orientation. Our studies have found that secondary electron and orientation contrast imaging has been possible for a variety of specimen materials up to a temperature of at least 900 degrees C, without significant degradation of imaging quality. Electron backscatter diffraction patterns have been acquired at temperatures of at least 900 degrees C and are of sufficient quality to allow automated data collection. Automated EBSD maps have been produced at temperatures between 200 degrees C and 700 degrees C in aluminium, brass, nickel, steel, quartz, and calcite, and even at temperatures >890 degrees C in pure titanium. The combination of scanning electron microscope imaging techniques and EBSD analysis with high-temperature in-situ experiments is a powerful tool for the observation of dynamic crystallographic and microstructural processes in metals, semiconductor materials, and ceramics.  相似文献   

9.
The radiation hardness of a test batch of lead tungstate crystals grown by a new technology at the Bogoroditsk Technochemical Plant for the PANDA experiment has been measured. The optical properties of the crystals have been investigated at temperatures ranging from +20 to ?20°C under irradiation with a 137Cs radionuclide source. The light yield in the crystal is seen to considerably increase with a decrease in its temperature. In addition, the loss of the crystal transparency under irradiation at low temperatures is higher than under irradiation at room temperature. As a result, at a fixed dose rate, the signal from the crystal at a negative temperature may be considerably greater than the signal at room temperature even if the accumulated dose is high.  相似文献   

10.
Combined ultrasonic and microtomographic measurements were conducted for simultaneous determination of elastic property and density of noncrystalline materials at high pressures. A Paris-Edinburgh anvil cell was placed in a rotation apparatus, which enabled us to take a series of x-ray radiography images under pressure over a 180° angle range and construct accurately the three-dimensional sample volume using microtomography. In addition, ultrasonic elastic wave velocity measurements were carried out simultaneously using the pulse reflection method with a 10° Y-cut LiNbO(3) transducer attached to the end of the lower anvil. Combined ultrasonic and microtomographic measurements were carried out for SiO(2) glass up to 2.6 GPa and room temperature. A decrease in elastic wave velocities of the SiO(2) glass was observed with increasing pressure, in agreement with previous studies. The simultaneous measurements on elastic wave velocities and density allowed us to derive bulk (K(s)) and shear (G) moduli as a function of pressure. K(s) and G of the SiO(2) glass also decreased with increasing pressure. The negative pressure dependence of K(s) is stronger than that of G, and as a result the value of K(s) became similar to G at 2.0-2.6 GPa. There is no reason why we cannot apply this new technique to high temperatures as well. Hence the results demonstrate that the combined ultrasonic and microtomography technique is a powerful tool to derive advanced (accurate) P-V-K(s)-G-(T) equations of state for noncrystalline materials.  相似文献   

11.
Although the multichannel Brillouin spectroscopy with an angular dispersion-type Fabry-Perot interferometer (ADFPI) becomes a powerful tool for quick measurements, its resolution and contrast are not enough for the study of single crystals. A highly sensitive multichannel detector enables the ADFPI to use a solid etalon with high reflectivity (99.5%); hence, the high resolution and the high contrast of a spectrum are achieved. The finesse, the inverse of the resolution, reaches 100 with a 10 mm diameter of aperture size. The highest finesse of 140 is obtained by using a smaller diameter of 2 mm. The accuracy is examined by the measurement of a quartz crystal. The improvement in the resolution and contrast enables investigations of weak attenuation in a quartz crystal. The elastic anomaly of the alpha-beta transition of a quartz crystal is clearly observed both in sound velocity and attenuation. From the elastic constant c(11), the critical parameter K=0.76 is determined.  相似文献   

12.
The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.  相似文献   

13.
A method for measuring elastic constants of piezoelectric materials at high temperature up to 1224 K is proposed. It determines all independent elastic constants by measuring resonance frequencies of a rectangular parallelepiped piezoelectric specimen contactlessly using its own piezoelectricity with an antenna. Without using conventional contacting piezoelectric transducers, vibrational sources are excited directly in the specimen by the oscillating electric field. Capability of the method is demonstrated by measuring the elastic constants of langasite at high temperature up to 1224 K, and temperature coefficients of the elastic constants are determined. In addition, elastic constants of alpha quartz are measured at high temperature up to just below the alpha-beta phase transition temperature. Considering the local deformation with temperature increment, an interpretation based on the strain energy reduction is proposed for the unusual temperature dependence of C(66). Furthermore, the internal-friction tensor is measured, and the relationship between the observed anisotropy in internal friction and the structural evolution with temperature increment is discussed.  相似文献   

14.
Finite element modeling of machining of hydrogenated Ti-6Al-4V alloy   总被引:1,自引:1,他引:0  
The present study is undertaken to investigate the effect of hydrogen on the cutting performance of Ti-6Al-4V alloy by FEM. Mechanical behaviors of hydrogenated Ti-6Al-4V alloy are studied at elevated temperatures and high strain rates with split Hopkinson pressure bar. The Johnson–Cook model was developed combined with quasi-static experimental data. A numerical model is developed to simulate the cutting process. The results of the experiments and simulations agreed well. The results demonstrate that the presence of hydrogen has a significant effect on the cutting forces and temperature, and the cutting forces and temperature increase first and then decreased gradually with the increasing of hydrogen contents. The simulation results show that titanium alloys with 0.3% hydrogen have better machinability at high cutting speed.  相似文献   

15.
S. Swann   《Tribology International》1981,14(5):281-286
This research was conducted to examine whether a relationship exists between the true elastic limit of steel and its scuffing load measured under boundary lubricated conditions. Scuffing tests were carried out on a pin-on-disc machine using steel components which were heat treated to give differeing yield points. Yield point was also altered by testing at elevated temperature. The true elastic limits of steels in the same conditions as for scuffing tests were measured by a highly sensitive technique. True yield points are reported for EN8 steel in both soft and hard condition at room temperature and at 201°C. A difference in scuffing load for soft and hard specimens was measured for certain operating conditions giving some validation of the elastic limit hypothesis. Scuffing testing at elevated temperatures produced some unexpected results which do not allow a thorough proof of the hypothesis. These findings are discussed  相似文献   

16.
An apparatus for embedding tissues at resin temperatures down to 228 K is described. By placing thermocouples in the resin the temperature has been monitored during embedding at low temperature with glycol methacrylate (GMA) and Lowicryl K4M. Even in this apparatus with a liquid cooling bath the heat of polymerization is not dissipated and the resin temperature rises. This rise is directly proportional to the resin temperature at the onset of polymerization and is higher in Lowicryl K4M than GMA. The initial resin temperature also affects the time taken for polymerization. The time to the onset of the peak and its duration are both increased as the temperature is lowered. This effect is more pronounced with GMA than Lowicryl K4M and polymerization of GMA is inhibited at the lowest temperature used. When Lowicryl K4M, polymerized at low temperature, is warmed up to ambient a further exothermic reaction occurs, which causes the resin temperature to rise well above ambient. Both this temperature peak and that during polymerization are reduced, but not totally eliminated, by reducing the resin volume. Aircooled systems are inefficient compared with the low-temperature apparatus used here and the resin temperature rise is consequently greater and, even with small resin volumes, it can be very high. It is therefore unlikely for published methods that the temperature specified has been maintained in the resin during polymerization. The implications of these findings are discussed in relation to enzyme and antigen survival. Recommendations include use of very small volumes of resin, refrigerated liquid-bath rather than air-cooled systems and contact with a heat sink when specimens are warmed up to ambient temperature. Examples of enzyme reaction, antigen survival and structural preservation obtained with the method are presented.  相似文献   

17.
Computational experiments on fundamental unstretched laminar burning velocities and flame response to stretch (represented by the Markstein number) of hydrogen-air flames at high temperatures and pressures were conducted in order to understand the dynamics of the flames including hydrogen as an attractive energy carrier in conditions encountered in practical applications such as internal combustion engines. Outwardly propagating spherical premixed flames were considered for a fuel-equivalence ratio of 0.6, pressures of 5 to 50 atm, and temperatures of 298 to 1000 K. For these conditions, ratios of unstretched-to-stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), similar to the flames at normal temperature and normal to moderately elevated pressures, implying that the “local conditions” hypothesis can be extended to the practical conditions. Increasing temperatures tended to reduce tendencies toward preferential-diffusion instability behavior (increasing the Markstein number) whereas increasing pressures tended to increase tendencies toward preferential-diffusion instability behavior (decreasing the Markstein number).  相似文献   

18.
Tensile tests were conducted on polycaprolactone at various strain rates and temperatures. Focusing on the mechanical properties within only the small-strain elastic region, i.e. up to the inflection point in the stress-strain diagram, it was found that strain rate and temperature had significant effects on the polymer. This finding implies that the effects of strain rate and temperature on the elastic properties of polycaprolactone should be considered in the design and manufacture of rigidity-sensitive, load-bearing applications, including use as biomaterial for scaffolds in tissue engineering applications.  相似文献   

19.
Since the early experiments of Swift (Engineering 164, 253–257, 1947), it has been recognized that metal polycrystals lengthen when twisted at room temperature under free-end testing conditions and shorten when similarly strained at elevated temperatures. Glide modelling using the conventional methods of crystal plasticity has provided a detailed explanation of the lengthening behaviour in terms of texture effects. This arises because the lattice rotations caused by shear move more grains into “lengthening” than into “shortening” orientations. The explanation for the shortening behaviour has proved to be much more elusive and cannot be provided by glide simulations alone. It is shown that shortening is caused by the occurrence of dynamic recrystallization during deformation at elevated temperatures. Methods of modelling the grain rotations produced by recrystallization are described. Account must be taken of both oriented nucleation and selective growth. When the grain rotation effects of recrystallization are incorporated into a suitable crystal plasticity model, the shortening behaviour is readily reproduced.  相似文献   

20.
This paper presents investigations on the tribological behaviour of PTFE composites against steel at cryogenic temperatures. The results showed that the friction coefficient decreases with temperature down to 77 K, but did not follow a linear evolution further down to extreme low temperatures. It can be stated that the cryogenic environment has a significant influence on the tribological performance of the polymer composites. The effect of low temperatures was more clearly detected at low sliding speed, where friction heat is reduced. A change in wear mechanism from adhesive to abrasive was observed in this case. SEM and AFM analyses showed that the PTFE matrix composites investigated under these experimental conditions have transferred material onto the disc down to very low temperatures. Chemical analyses indicate the presence of iron fluorides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号