首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
低碳钢(F+A)双相组织高温变形时的动态复原机制   总被引:1,自引:0,他引:1  
采用压缩试验,研究了普通低碳钢不同组织形貌铁素体加奥氏体(F+A)双相组织高温变形过程中的动态复原机制及其特点。试验发现,铁素体相发生动态回复,而奥氏体相则发生动态再结晶。当原始组织中存在A/A晶界时,奥氏体相的动态再结晶机制与通常的大角晶界凸出形核机制相同;而当原始组织中不存在A/A晶界时,奥氏体相的动态再结晶机制则完全改变,动态再结晶核心主要在变形较剧烈的F/A相界面处形成并向奥氏体晶内长大。相界面的存在对铁素体相的动态回复过程没有明显影响。  相似文献   

2.
<正> 高温形变热处理提高钢的强度,其原因是形变奥氏体的亚结构遗传给马氏体,并且由于亚结构的阻碍作用细化了马氏体晶粒。如果高温形变热处理时再结晶过程不显著,除了位错(自由的和亚晶界的)密度增加外,尚可看到沿轧制方向的奥氏体晶粒拉长,沿轧制面的奥氏体晶粒压扁。当原始奥氏体晶粒细化时,钢的屈服强度(σ_(0.2))可用Peteh-Hall公式表示:  相似文献   

3.
为研究靶材显微组织对溅射薄膜质量的影响,对质量分数为99.99%的钴板在室温下单向轧制,利用光学显微镜(optical microscope,OM)和电子背散射衍射(EBSD)技术分析其冷轧前后显微组织和织构特征,对开发高性能超高纯钴靶材提供理论依据与试验支撑。结果表明:初始态高纯钴板晶粒形状不规则、尺寸不均匀,以密排六方相(HCP)为主;HCP相虽然有一定的织构,但取向特征不明显,且HCP相中有大量板条组织,FCC相呈现出比HCP相更随机的取向分布;冷轧变形导致板材中晶粒变形剧烈,部分晶粒沿轧制方向明显拉长,并形成大量小角度晶界及变形孪晶;在孪晶和小角度晶界的分割下,变形晶粒存在一定程度细化,形成细晶区,同时,钴板发生马氏体相变,FCC相转变为HCP相;轧制态板材中HCP相呈基面织构,而FCC相依旧呈随机的取向分布特征。  相似文献   

4.
基于"固体与分子经验电子理论"(EET),利用合金相和相界面的价电子结构参数统计值n′A、E′A、Δρ′、σ分析第二相粒子和固溶Nb对焊接HAZ组织和韧性的影响。结果表明:Nb元素固溶时,因Δρ′/σ值大于其他合金元素而使Nb具有强烈阻碍奥氏体晶界迁移的作用;第二相粒子Ti(V、Nb)C(N)析出时,形成相界面的Δρ′/σ较大,因而更能有效地钉扎奥氏体晶界而使高温奥氏体晶粒显著细化;第二相粒子析出后,能够促进新相铁素体生成,改善焊接HAZ韧性的机理也可追溯到n′A、E′A及Δρ′。上述分析结果与实验结果符合很好。  相似文献   

5.
20Mn2钢中添加ZrC粒子获得超细晶粒的研究   总被引:4,自引:1,他引:3  
在 2 0Mn2钢熔炼过程中加入一定体积分数和一定粒径的ZrC粒子以起形变核心和再结晶核心作用 ,利用大轧制变形加速奥氏体和铁素体晶粒发生再结晶而细化晶粒 ,分析了ZrC粒子对晶粒细化的作用以及合金元素和轧制变形对力学性能的影响。试验结果表明 ,试验钢晶粒尺寸被细化到 1~ 2 μm。与 2 0Mn2钢相比 ,S1钢淬火态抗拉强度和屈服强度分别提高 131.8%和 187.0 % ,2 0 0℃ 2 0 0min低温回火态分别提高 110 .6 %和 16 3.8% ,同时 ,延伸率也有所提高 ;S2钢油淬态的抗拉强度和屈服强度分别提高为 34.2 %和 39.9% ,钢S2油淬低温回火态分别提高了 2 9.9%和 35 .0 % ,与 2 0Mn2钢的塑性指标相比 ,油淬及低温回火态延伸率分别提高了 90 %和 111%。  相似文献   

6.
提出了一种制备7075铝合金厚板的多向锻造后再轧制的复合变形模式.结果发现,在250~350℃范围内,应变率为0.1s-1的条件下,经过多向变形后(变形系数达21.5),再进行轧制变形(变形系数达10.5),可使7075铝合金获得2~3μm的细晶组织.大变形条件下应变诱导高能位错区的形成及演变成再结晶核心是晶粒细化的组织特征;微细二相粒子对细晶组织的稳定极为重要.  相似文献   

7.
针对热等静压工艺制备的Ti-6Al-4V合金,利用Gleeble-1500热模拟机进行高温热压缩变形试验,结合OM组织观察研究热变形温度为850~1 050℃与变形速率为0.001~5 s-1对该合金热变形组织的影响规律。结果表明:单道次变形时,当温度在900℃及以下,层片状α相发生球化或动态再结晶,得到均匀等轴的细小组织;高于950℃时,变形后淬火组织由均匀等轴β晶粒与板条马氏体组成,晶粒内有交叉排列的短片层α相;在950℃以下,随着应变速率增大,动态再结晶体积分数降低,晶粒内α相细化,当应变速率过大时,变形后组织以拉长的未再结晶粗大β晶粒为主;相较单道次变形,3道次变形中每一道次变形量较小,低应变速率下再结晶组织易粗大化,随着应变速率的增大,再结晶组织不均匀分布。  相似文献   

8.
为研究X70管线钢在高温压缩变形过程中的组织转变规律,利用Gleeble-3500型热模拟机,在应变速率为0.01~1.00 s~(-1)、变形温度为850~1 250℃的变形条件下,对X70管线钢进行单道次高温压缩变形实验,研究试验钢的动态再结晶行为。结果表明:该钢在应变速率为0.01~0.10 s~(-1)和温度为1 100~1 250℃下变形时易发生动态再结晶;考虑到晶粒细化,再结晶温度区,连轧温度应控制在1 100~1 200℃、轧制应变速率为0.10 s~(-1);非再结晶区,开轧温度应≤950℃、轧制应变速率为0.10 s~(-1)。  相似文献   

9.
为研究轧制温度对Mg-8.3Gd-2.6Y-0.4Zr(质量分数/%)合金显微组织和力学性能的影响,将500℃预轧制所得板材在200、300、400℃进行二次轧制变形。结果表明:200℃二次轧制变形使合金中引入大量位错和孪晶;合金在300℃二次轧制过程中,于晶界和晶粒内部分别形成大量的β相和β′相,而400℃二次轧制仅使合金晶界处形成粗大的β相;不同温度下二次轧制变形均使预轧制板材的基面织构强度增大,二次轧制温度越低,基面织构越强;不同温度下二次轧制变形均使预轧制板材的强度提高,二次轧制温度越低,合金强度提高越显著;经200℃二次轧制得到的合金具有331 MPa的最高屈服强度。  相似文献   

10.
采用热模拟技术、显微分析方法和力学性能测试等手段,对连续油管用粒状贝氏体钢在TIG焊接过程中,接头热影响区不同部位的微观组织和宏观力学性能进行分析。与此同时,热影响区与母材组织及力学性能的对比表明,在接头热影响区中,过热粗晶区以长条状铁素体组织为主,冲击功相对较高。正火区和不完全正火区组织以多边形铁素体为主,晶粒之间晶界清晰,块状铁素体之间为片状和粒状珠光体组织,冲击功较低;回火区没有发生明显相变,晶粒尺寸比母材略有增加,组织发生了微小的回复再结晶,材料的冲击功有所回复。  相似文献   

11.
控制轧制钢中的断口分离现象   总被引:3,自引:0,他引:3  
产生断口分离现象的主要原因是回火脆现象。在低温控制轧制后的冷却过程中,偏析层中的磷扩散到铁素体晶界上,削弱了铁素体晶界的韧性,出现分离现象。随着钢中磷含量增加,分离裂纹的数目增加,而随着钼含量增加,分离裂纹的数目减少。在韧脆转变温度区间内分离现象出现得最严重,而在低温和高温区内没有分离裂纹存在。分离裂纹的表面形态与应变速率有关,不同的应变速率产生分离的机制不同,因此,冲击样品和拉伸样品的分离裂纹表面形态不同。断口分离现象可以通过正火、淬火加回火或再结晶退火来消除。  相似文献   

12.
研究了两种控轧控冷工艺对HRB335E钢的组织和性能的影响。结果表明:这两种轧制工艺使钢的表面和心部均得到铁素体和珠光体组织,表面无回火马氏体产生;同时将进精轧温度从970~980℃降至870~880℃,其显微组织更细更均匀,特别是表面的铁素体晶粒更细小,强度和塑性均有提高,表现出更好的强韧性。  相似文献   

13.
文中研究了温变形工艺中变形温度和变形程度对5A06铝合金显微组织的影响.结果表明:变形温度低于470℃、变形量在45%~50%范围时,随变形温度的升高,组织内第二相数量越少,基体晶粒越大;变形温度高于470℃时,发生再结晶.当变形温度控制在350℃,变形量小于70%时,随变形量增大,晶粒被细化,且第二相呈弥散分布;超过70%,也将发生再结晶.  相似文献   

14.
US 8 409 367 B2专利提供了一种通过不断的马氏体和奥氏体(γ/α′)转变来制造纳米组织奥氏体钢板的方法。粗晶奥氏体板通过应变诱发相变转变成纳米晶马氏体,然后通过动态再结晶温轧反向转变成纳米组织奥氏体。为了得到所要的组织,马氏体和奥氏体转变可以重复10次。奥氏体—马氏体—奥氏体循环细化晶粒到纳米级,使纳米组织奥氏体钢的强度和塑性得以显著的提高。  相似文献   

15.
低碳钢中添加ZrO2粒子获得超细晶粒的研究   总被引:1,自引:0,他引:1  
通过模拟超塑性预处理细化晶粒原理 ,在低碳钢中加入一定粒径和一定体积分数的ZrO2 粒子以起形变区核心和再结晶核心作用 ,研究了变形量不同的轧制工艺对试验钢组织和力学性能的影响。研究结果表明 :试验钢加入平均粒径为 0 .5 μm、体积分数为 0 .2 %的ZrO2 粒子及轧后水冷条件下 ,变形量为 76 %时 ,晶粒尺寸细化到 7.8μm ,试验钢的综合力学性能得到明显提高。  相似文献   

16.
27SiMnA钢进行亚温等温淬火得到铁素体+马氏体+贝氏体(占50%)复相组织,这种组织具有理想的强韧性配合。亚温等温复相组织中的贝氏体类似低温上贝氏体(B_Ⅱ)。马氏体晶体外貌除了有条状外,还有枣核状。被强化的未溶铁素体呈不连续块状分布。马氏体和贝氏体铁素体晶体细小、马氏体和贝氏体铁素体中碳化物弥散分布以及少量薄膜状形式分布的残余奥氏体是亚温等温淬火复相组织(B+M+F)强韧化的主要原因。  相似文献   

17.
激光表面处理铝-锂合金的组织与性能   总被引:1,自引:0,他引:1  
本文研究了激光表面处理对一种使用状态的铝-锂合金组织与性能的影响。实际结果表明,与基材的未再结晶+局部再结晶组织不同,在激光重熔区内,邻近基材是细小的等轴晶区;与此层相邻的是平行于热流方向的拉长晶粒区,心部则为粗大等轴晶粒组织。加快激光束扫描速度,可细化重熔区内晶粒而使显微硬度提高。在时效处理时,激光重熔区比基材硬度要高,而两者的断口形貌则差别不大。  相似文献   

18.
<正> 一、前言 钢铁零件淬火后的奥氏体晶粒度,是衡量零件力学性能与工艺性能的重要指标之一,也是分析零件破断失效的主要参考因素。 淬火回火后,钢的冲击韧性随奥氏体晶粒粗化而降低。而采取措施细化奥氏体晶粒,却能在不改变设计与材料的条件下,在不降低甚至提高强度的同时,增加材料的塑性和韧性;或是在不降低韧性的前提下,提高材料的强度。  相似文献   

19.
用环形通道转角挤压工艺在300、350、380℃制备AZ80镁合金壳体构件,通过光学显微镜、扫描电子显微镜、电子背散射衍射及拉伸试验研究变形温度对构件显微组织、织构、力学性能的影响,对变形工艺进行初步探索.结果表明:经过环形通道转角连续两次剪切变形,AZ80合金晶粒细化;当变形温度高于300℃,材料基本实现完全动态再结晶;当变形前均匀化坯料的预热温度低于350℃时,连续β-Mg17Al12相静态析出,一定程度阻碍变形中动态再结晶进行.同时,大量颗粒状β-Mg17Al12相动态析出,部分对晶粒长大产生钉扎效应;最终,在350℃变形时挤压件壁部的晶粒尺寸被细化至约25.1μm.织构分析表明,通道剪切变形的引入促进了晶粒激活滑移面向剪切面分布,利于镁合金典型基面织构弱化.环形通道挤压变形后材料性能大幅提升.在低温变形时,挤压件性能受高密度连续析出相影响,加工硬化能力强但断裂韧性极差.随变形温度升高,挤压件性能与晶粒细化幅度正相关,在350℃时强度和塑性较好平衡.断裂和强韧化分析表明,综合性能显著提升主要得益于晶粒细化和织构弱化的协同作用.  相似文献   

20.
<正> 一、前言 亚温淬火利用韧性相铁素体的存在而获得复合细化组织从而发挥其强韧性的威力。对结构钢进行高温亚温淬火(加热温度接近于Ac_3)可以获得在马氏体基体上保留少量弥散分布的细小铁素体组织,从而具有以下几方面优点:1.提高钢在室温和低温下的冲击韧性,因而扩大材料的使用范围;2.降低钢的冷脆转折温度,与常规淬火相比,使材料可在更低的温度下处于韧性状态,3.抑制钢的可逆回火脆性,因而可降低调质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号