首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
1. Neurons that are selectively sensitive to the direction of motion of elongated contours have been found in several cortical areas in many species. However, in the striate cortex of the cat and monkey, and the extrastriate posteromedial lateral suprasylvian visual area of the cat, such cells are generally component motion selective, signaling only the direction of movement orthogonal to the preferred orientation; a direction that is not necessarily the same as the motion of the entire pattern or texture of which the cell's preferred contour is part. The primate extrastriate middle temporal area is the only cortical region currently known to contain a substantial population of pattern-motion-selective cells that respond to the shared vector of motion of mixtures of contours. 2. From analyzing published data on the connectivity of the cat's cortex, we predicted that the anterior ectosylvian visual area (AEV), situated within the anterior ectosylvian sulcus, might be a higher-order motion processing area and thus likely to contain pattern-motion-selective neurons. This paper presents the results of a study on neuronal responses in AEV. 3. Ninety percent of AEV cells that responded strongly to drifting grating and/or plaid stimuli were directionally selective (directionality index > 0.5). For this group, the mean directionality index was 0.75. Moreover, 55% of these cells were unequivocally classified as pattern motion selective and only one neuron was classified as definitely component motion selective. Thus high-level pattern motion coding occurs in the cat extrastriate cortex and is not limited to the primate middle temporal area. 4. AEV contains a heterogeneous population of directionally selective cells. There was no clear relation between the degree of directional selectivity for plaids or gratings and the degree of selectivity for pattern motion or component motion. Nevertheless, 28% of the highly responsive cells were both more strongly modulated by plaids than gratings and more pattern motion selective than component motion selective. Such cells could correspond to a population of "selection units" signaling the salience of local motion information. 5. AEV lacks global retinotopic order but the preferred direction of motion of neurons (rather than axis of motion, as in the middle temporal area and the posteromedial lateral suprasylvian visual area) is mapped systematically across the cortex. Our data are compatible with AEV being a nonretinotopic, feature-mapped area in which cells representing similar parts of "motion space" are brought together on the cortical sheet.  相似文献   

2.
Strobe rearing prevents the convergence of inputs with different response timings onto area 17 simple cells. J. Neurophysiol. 80: 3005-3020, 1998. The preceding paper showed that the loss of direction selectivity in simple cells induced by strobe rearing reflects the elimination of spatially ordered response timing differences across the receptive field that underlie spatiotemporal (S-T) inseparability. Here we addressed whether these changes reflected an elimination of certain timings or an alteration in how timings were associated in single cells. Timing in receptive fields was measured using stationary bars undergoing sinusoidal luminance modulation at different temporal frequencies (0.5-6 Hz). For each bar position, response phase versus temporal frequency data were fit by a line to obtain two measures: absolute phase and latency. In normal cats, many individual simple cells display a wide range of timings; in layer 4, the mean range for absolute phase and latency was 0.21 cycles and 39 ms, respectively. Strobe rearing compressed the mean timing ranges in single cells, to 0.08 cycles and 31 ms, respectively, and this compression accounted for the loss of inseparability. A similar compression was measured in layer 6 cells. In contrast, the range of timing values across the simple-cell population was relatively normal. Single cells merely sampled narrower than normal regions of the timing space. We sought to understand these cortical changes in terms of how inputs from the lateral geniculate nucleus (LGN) may have been affected by strobe rearing. In normal cats, a wide range of absolute phase and latency values exists among lagged and nonlagged LGN cells, and these thalamic timings account for most of the cortical timings. Also, S-T inseparability in many simple cells can be attributed to the convergence of lagged and/or nonlagged inputs. Strobe rearing did not change the sampling of lagged and nonlagged cells, and the geniculate timings continued to account for most of the cortical timings. However, strobe rearing virtually eliminated cortical receptive fields with mixed lagged and nonlagged timing, and it compressed the timing range in cells dominated by one or the other geniculate type. Thus strobe rearing did not eliminate certain timings in LGN or cortex, but prevented the convergence of different timings on single cells. To account for these results, we propose a developmental model in which strobe stimulation alters the correlational structure of inputs based on their response timing. Only inputs with similar timing become associated on single cortical cells, and this produces S-T separable receptive fields that lack the ability to confer a preferred direction of motion.  相似文献   

3.
What is the relationship between the temporal jitter in the arrival times of individual synaptic inputs to a neuron and the resultant jitter in its output spike? We report that the rise time of firing rates of cells in striate and extrastriate visual cortex in the macaque monkey remain equally sharp at different stages of processing. Furthermore, as observed by others, multiunit recordings from single units in the primate frontal lobe reveal a strong peak in their cross-correlation in the 10-150 msec range with very small temporal jitter (on the order of 1 msec). We explain these results using numerical models to study the relationship between the temporal jitter in excitatory and inhibitory synaptic input and the variability in the spike output timing in integrate-and-fire units and in a biophysically and anatomically detailed model of a cortical pyramidal cell. We conclude that under physiological circumstances, the standard deviation in the output jitter is linearly related to the standard deviation in the input jitter, with a constant of less than one. Thus, the timing jitter in successive layers of such neurons will converge to a small value dictated by the jitter in axonal propagation times.  相似文献   

4.
In mammalian visual cortex, local connections are ubiquitous, extensively linking adjacent neurons of all types. In this study, optical maps of intrinsic signals and responses from single neurons were obtained from the same region of cat visual cortex while the effectiveness of the local cortical circuitry was altered by focally disinhibiting neurons within a column of known orientation preference. Maps of intrinsic signals indicated that local connections provide strong and functional subthreshold inputs to neighboring columns of other orientation preferences, altering the observed orientation preference to that of the disinhibited column. However, measuring the suprathreshold response using single-cell recordings revealed only mild changes of preferred orientation over the affected region. Because strongly tuned subthreshold inputs from cortex only marginally affect the tuning of a cortical cell's output, it is concluded that local cortical inputs are integrated weakly compared to geniculate inputs. Such circuitry potentially allows for the normalization of responses across a wide range of input activity through local averaging.  相似文献   

5.
The ability to distinguish colour from intensity variations is a difficult computational problem for the visual system because each of the three cone photoreceptor types absorb all wavelengths of light, although their peak sensitivities are at relatively short (S cones), medium (M cones), or long (L cones) wavelengths. The first stage in colour processing is the comparison of the outputs of different cone types by spectrally opponent neurons in the retina and upstream in the lateral geniculate nucleus. Some neurons receive opponent inputs from L and M cones, whereas others receive input from S cones opposed by combined signals from L and M cones. Here we report how the outputs of the L/M- and S-opponent geniculate cell types are combined in time at the next stage of colour processing, in the macaque primary visual cortex (V1). Some V1 neurons respond to a single chromatic region, with either a short (68-95 ms) or a longer (96-135 ms) latency, whereas others respond to two chromatic regions with a difference in latency of 20-30 ms. Across all types, short latency responses are mostly evoked by L/M-opponent inputs whereas longer latency responses are evoked mostly by S-opponent inputs. Furthermore, neurons with late S-cone inputs exhibit dynamic changes in the sharpness of their chromatic tuning over time. We propose that the sparse, S-opponent signal in the lateral geniculate nucleus is amplified in area V1, possibly through recurrent excitatory networks. This results in a delayed, sluggish cortical S-cone signal which is then integrated with L/M-opponent signals to rotate the lateral geniculate nucleus chromatic axes.  相似文献   

6.
1. Cells were recorded in areas 3b and 1 of the primary somatosensory cortex (SI) of three monkeys during active arm movements. Successful reconstructions were made of 46 microelectrode penetrations, and 298 cells with tactile receptive fields (RFs) were located as to cytoarchitectonic area, lamina, or both. 2. Area 3b contained a greater proportion of cells with slowly adapting responses to tactile stimuli and fewer cells with deep modality inputs than did area 1. Area 3b also showed a greater level of movement-related modulation in tactile activity than area 1. Other cell properties were equally distributed in the two areas. 3. The distribution of cells with low-threshold tactile RFs that also responded to lateral stretch of the skin or to passive arm movements was skewed toward deeper laminae than for tactile cells that did not respond to those manipulations. 4. The variation of activity of tactile neurons during arm movements in different directions was weaker in the superficial laminae than in deeper cortical laminae. 5. Cells with only increases in activity during arm movements were preferentially but not exclusively located in middle and superficial layers. Cells with reciprocal responses were found mainly in laminae III and V, whereas cells with only decreases in activity were concentrated in lamina V. 6. Overall, active arm movements evoke directionally tuned tactile and "deep" activity in areas 3b and 1, in particular in the deeper cortical laminae that are the source of the descending output pathways from SI.  相似文献   

7.
The nocturnal, New World owl monkey (Aotus trivirgatus) has a rod-dominated retina containing only a single cone type, supporting only the most rudimentary color vision. However, it does have well-developed magnocellular (M) and parvocellular (P) retinostriate pathways and striate cortical architecture [as defined by the pattern of staining for the activity-dependent marker cytochrome oxidase (CO)] similar to that seen in diurnal primates. We recorded from single neurons in anesthetized, paralyzed owl monkeys using drifting, luminance-modulated sinusoidal gratings, comparing receptive field properties of M and P neurons in the lateral geniculate nucleus and in V1 neurons assigned to CO "blob," "edge," and "interblob" regions and across layers. Tested with achromatic stimuli, the receptive field properties of M and P neurons resembled those reported for other primates. The contrast sensitivity of P cells in the owl monkey was similar to that of P cells in the macaque, but the contrast sensitivities of M cells in the owl monkey were markedly lower than those in the macaque. We found no differences in eye dominance, orientation, or spatial frequency tuning, temporal frequency tuning, or contrast response for V1 neurons assigned to different CO compartments; we did find fewer direction-selective cells in blobs than in other compartments. We noticed laminar differences in some receptive field properties. Cells in the supragranular layers preferred higher spatial and lower temporal frequencies and had lower contrast sensitivity than did cells in the granular and infragranular layers. Our data suggest that the receptive field properties across functional compartments in V1 are quite homogeneous, inconsistent with the notion that CO blobs anatomically segregate signals from different functional "streams."  相似文献   

8.
Eight male cynomolgus monkeys (Macaca fascicularis) were retrained to perform 2 preoperatively acquired discriminations (brightness-flux and brightness-area) after receiving bilateral striate cortex lesions to determine whether the inferior temporal cortex participates in the relearning of visual discriminations following striatectomy. Ss were then retested in the same tasks after bilateral inferior temporal surgery. After inferior temporal surgery, Ss with histologically verified total ablation of the striate cortex showed little or no impairment in relearning the discriminations, whereas Ss with remnants of intact striate cortex were severely impaired. Findings suggest that the inferior temporal cortex is of minor importance in relearning brightness-flux and brightness-area discriminations in the absence of striate cortex. This interpretation is consistent with the view that the contribution of the inferior temporal cortex to visual discrimination performance depends on input from striate cortex. (31 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Quantitative data are presented on the orientation and direction specificity of the responses of cells in macaque monkey striate cortex. There is a bimodal distribution of direction-specific and nondirection-specific cells, with similar orientation tuning in each class. Cells range in orientation bandwidth at half amplitude from 6 degrees to 360 degrees (i.e. no orientation tuning), with a median near 40 degrees. Foveal-parafoveal and simple-complex subsamples show similar ranges of orientation bandwidths as well as similar medians (the bandwidths being somewhat broader than those found in cat cortex). The foveal subsample and a high-spatial-frequency subsample have more horizontal and vertical optimal orientations than oblique ones. Most cells show inhibition to some orientations, as well as excitation to others. Minimum-response orientations are generally less than 90 degrees from the optimal orientation--indicating maximum inhibition adjacent to the excitatory orientations. Three simple receptive field models are shown to differ in their abilities to account for these results.  相似文献   

10.
We monitored optical signals from cortex stained with a voltage sensitive dye to study activity evoked by intracortical electrical stimulation. The objectives were to study the spatial and temporal spread of activity from intrinsic connections near the stimulating electrode and to develop a new technique to study extrinsic projections from striate cortex to extrastriate target areas. Various measures were made of the time course of the optical signal (latency, rise time, decay time, temporal summation, facilitation versus depression, and presence or absence of a slow undershoot); in general, these measures were found to vary significantly across different response positions, different experiments, and even different runs within the same experiment. The spatial distribution of responses near the stimulating electrode in striate cortex was usually elliptical and was most often elongated along the anterior-posterior axis, with a typical size (full width at 75% max) of 1.3 mm (anterior-posterior axis) by 0.75 mm (medio-lateral axis). In some cases, complex spatio-temporal patterns were observed, in which the position of the maximum optical signal shifted with time or split into multiple peaks. In eight experiments, a response focus was found in extrastriate cortex at an expected location within the lateromedial area (LM). The response focus in LM was typically about half the size of that in striate cortex. In some experiments we observed additional focal responses in the anterolateral visual area (AL). The extrastriate responses showed a significant delay (3-10 ms) in onset and time to peak relative to the striate response. The validity of this technique for determining extrinsic projections was tested in two types of experiments. In the first, stimulation from two electrodes in striate cortex generated response foci consistent with the known topographic organization of area LM. In the second, the optically measured response focus was shown to correlate with the histologically reconstructed projection of a chemical tracer injected near the site of stimulation. We discuss the chain of neurophysiological events that occur during and after focal electrical stimulation and how they relate to the observed optical signal. We conclude that direct passive responses were a small component of our signal, that the component due to action potentials in directly stimulated neurons should have occurred in the first 1-2 ms post stimulus and is small compared to the peak signal, and that overall our signals were probably dominated by a combination of asynchronously occurring action potentials and excitatory and inhibitory synaptic potentials.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
In a series of experiments on New World and Old World monkeys, architectonic features of auditory cortex were related to tone frequency maps and patterns of connections to generate and evaluate theories of cortical organization. The results suggest that cortical processing of auditory information involves a number of functionally distinct fields that can be broadly grouped into four or more levels of processing. At the first level, there are three primary-like areas, each with a discrete pattern of tonotopic organization, koniocortical histological features, and direct inputs from the ventral division of the medial geniculate complex. These three core areas are interconnected and project to a narrow surrounding belt of perhaps seven areas which receive thalamic input from the major divisions of the medial geniculate complex, the suprageniculate/limitans complex, and the medial pulvinar. The belt areas connect with a lateral parabelt region of two or more fields that are almost devoid of direct connections with the core and the ventral division of the medial geniculate complex. The parabelt fields connect with more distant cortex in the superior temporal gyrus, superior temporal sulcus, and prefrontal cortex. The results indicate that auditory processing involves 15 or more cortical areas, each of which is interconnected with a number of other fields, especially adjoining fields of the same level.  相似文献   

12.
We examined cytochrome oxidase (CO) activity in striate cortex of four macaque monkeys after monocular enucleation at ages 1, 1, 5, and 12 weeks. These animal experiments were performed to guide our interpretation of CO patterns in occipital lobe specimens obtained from two children who died several years after monocular enucleation during infancy for tumor. In the macaques, the ocular dominance columns were labelled by injecting [3H]proline into the remaining eye. After enucleation at age 1 week, ocular dominance columns were eliminated in layer IVc(beta), resulting in a uniform pattern of autoradiographic label and CO staining. However, columns could still be seen in wet, unstained sections and with the Liesegang silver stain. Autoradiographs through layers IVc(alpha) and IVa showed residual, shrunken columns belonging to the missing eye, indicating that enucleation has less drastic effects in these layers. In the two human cases, enucleation at age 1 week also resulted in uniform CO staining in layer IVc. In the macaque after enucleation at age 5 weeks, ocular dominance columns belonging to the missing eye were severely narrowed, but still occupied 20% of layer IVc(beta). CO revealed wide, dark columns alternating with thin, pale columns in layer IVc(beta). The CO pattern and the columns labelled by autoradiography matched perfectly. After enucleation at age 12 weeks, only mild shrinkage of ocular dominance columns occurred. Enucleation at ages 1, 5, and 12 weeks did not alter the pattern of thin-pale-thick-pale stripes in V2. The main findings from this study were that (1) CO histochemistry accurately labels the boundaries of columns in layer IVc(beta) of macaque striate cortex after early monocular enucleation, making it a suitable technique for defining the critical period for plasticity of ocular dominance columns in human striate cortex; (2) enucleation causes more severe shrinkage of ocular dominance columns than eyelid suture; (3) early monocular enucleation obliterates ocular dominance columns in layer IVcbeta, but their pattern remains visible in wet sections and with the Liesegang stain; and (4) enucleation does not affect CO staining in V2.  相似文献   

13.
The visual areas of the temporal lobe of the primate are thought to be essential for the representation of visual objects. To examine the role of these areas in the visual awareness of a stimulus, we recorded the activity of single neurons in monkeys trained to report their percepts when viewing ambiguous stimuli. Visual ambiguity was induced by presenting incongruent images to the two eyes, a stimulation condition known to instigate binocular rivalry, during which one image is seen at a given time while the other is perceptually suppressed. Previous recordings in areas V1, V2, V4, and MT of monkeys experiencing binocular rivalry showed that only a small proportion of striate and early extrastriate neurons discharge exclusively when the driving stimulus is seen. In contrast, the activity of almost all neurons in the inferior temporal cortex and the visual areas of the cortex of superior temporal sulcus was found to be contingent upon the perceptual dominance of an effective visual stimulus. These areas thus appear to represent a stage of processing beyond the resolution of ambiguities--and thus beyond the processes of perceptual grouping and image segmentation--where neural activity reflects the brain's internal view of objects, rather than the effects of the retinal stimulus on cells encoding simple visual features or shape primitives.  相似文献   

14.
Investigated the relationships between reaction time (RT) and evoked potentials in 3 monkeys ( Macaca nemestrina ) during the performance of a simultaneous brightness discrimination task. Evoked potentials from the lateral geniculate, medial and inferior pulvinar, midbrain reticular formation, hippocampus, and striate and prestriate cortex were recorded concurrently with RT in response to the discriminative stimuli. An early component of the geniculate response and a late positive wave in striate cortex were found to be related systematically to RT. These components were largest for short RTs and diminished progressively in amplitude as RT lengthened. The statistical significance of these relationships is supported by a detailed analysis of single trials. The increases in amplitude of evoked potentials associated with short RTs are attributed to increased arousal level and are discussed in terms of reticular formation modulation of central excitability levels. (15 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
We have investigated the notion that directional responses of cells in the visual cortex depend on the type of stimulus used to drive the cell. Specifically, we have asked if sinusoidal gratings provide a different estimate of direction selectivity than bars that are brighter or darker than the background. Using standard techniques, we recorded from 176 cells in the visual cortex of nine cats. For each cell, bright bars, dark bars, and sinusoidal gratings were presented in a randomly interleaved fashion. Complex cells exhibited around twice as many direction-selective as nondirection-selective responses. Estimates of direction selectivity were nearly identical for bright and dark bars and for gratings. For simple cells, a similar ratio of direction-selective to nondirection-selective responses was observed for gratings. However, a larger proportion of simple cells were classified as direction selective when bars were used for stimulation. A simple cell that exhibited direction selectivity to a grating behaved in a similar manner when stimulated with bright or dark bars. However, in contrast to complex cells, some simple cells classed as directionally nonselective on the basis of their responses to gratings, displayed directionally selective behavior to bars. In addition, the preferred directions for dark and bright bars sometimes differed. These results demonstrate that the classification of a simple cell as directionally selective or nonselective can depend critically on the visual stimulus used.  相似文献   

16.
I explore here whether linear mechanisms can explain directional selectivity (DS) in simple cells of the cat's striate cortex, a question suggested by a recent upswing in popularity of linear DS models. I chose a simple cell with a space-time inseparable receptive field (RF), i.e. one that shows gradually shifting latency across space, as the RF type most likely to depend on linear mechanisms of DS. However, measured responses of the cell to a moving bar were less modulated, and extended over a larger spatial region than predicted by two different popular "linear" models. They also were more DS in exhibiting a higher ratio of total spikes for the preferred direction. Each of the two models used for comparison has a single "branch" with a single spatiotemporally inseparable linear filter followed by a threshold, hence, a- "1-branch" model. Nonlinear interactions between pairs of bars in a 2-bar linear superposition test of the cell also disagreed in time-course with those of the 1-branch models. The only model whose 1-bar and 2-bar predictions matched the measured cell (including a complete "4-branch" motion energy model that matches complex cells) has two branches that differ in phase by about 90 deg, i.e. in quadrature. Each branch has its own threshold that helps define the preceding spatiotemporal unit as a subunit even after the outputs of the two branches are summed. As subunit phases differ by only 90 deg, flashing bar responses of the 2-subunit model are similar to those of the 1-subunit model. Therefore, the number of subunits is hidden from view when testing with a conventional stationary bar. In summary, movement responses and nonlinear interactions between pairs of bars in the measured cell matched those of the 2-subunit model, while they disagreed with the popular 1-subunit model. Thus, multiple nonlinear subunits appear to be necessary for DS, even in simple cortical cells.  相似文献   

17.
We have studied the spatiotemporal receptive-field organization of 144 neurons recorded from the dorsal lateral geniculate nucleus (dLGN) of adult cats and kittens at 4 and 8 wk postnatal. Receptive-field profiles were obtained with the use of a reverse correlation technique, in which we compute the cross-correlation between the action potential train of a neuron and a randomized sequence of long bright and dark bar stimuli that are flashed throughout the receptive field. Spatiotemporal receptive-field profiles of LGN neurons generally exhibit a biphasic temporal response, as well as the classical center-surround spatial organization. For nonlagged cells, the first temporal phase of the response dominates, whereas for lagged neurons, the second temporal phase of the response is typically the largest. This temporal phase difference between lagged and nonlagged cells accounts for their divergent behavior in response to flashed stimuli. Most LGN cells exhibit some degree of space-time inseparability, which means that the receptive field cannot simply be viewed as the product of a spatial waveform and a temporal waveform. In these cases, the response of the surround is typically delayed relative to that of the center, and there is some blending of center and surround during the time course of the response. We demonstrate that a simple extension of the traditional difference-of-Gaussians (DOG) model, in which the surround response is delayed relative to that of the center, accounts nicely for these findings. With regard to development, our analysis shows that spatial and temporal aspects of receptive field structure mature with markedly different time courses. After 4 wk postnatal, there is little change in the spatial organization of LGN receptive fields, with the exception of a weak, but significant, trend for the surround to become smaller and stronger with age. In contrast, there are substantial changes in temporal receptive-field structure after 4 wk postnatal. From 4 to 8 wk postnatal, the shape of the temporal response profile changes, becoming more biphasic, but the latency and duration of the response remain unchanged. From 8 wk postnatal to adulthood, the shape of the temporal profile remains approximately constant, but there is a dramatic decline in both the latency and duration of the response. Comparison of our results with recent data from cortical (area 17) simple cells reveals that the temporal development of LGN cells accounts for a substantial portion of the temporal maturation of simple cells.  相似文献   

18.
Blocking GABAA-receptor-mediated inhibition reduces the selectivity of striate cortical neurons for the orientation of a light bar primarily by reducing the selectivity of their onset transient (initial 200 ms) response. Blocking GABAB-receptor-mediated inhibition with phaclofen, however, is not reported to reduce the orientation selectivity of these neurons when it is measured with a light bar. We hypothesized that blocking GABAB-receptor-mediated inhibition would instead affect the orientation selectivity of cortical neurons by reducing the selectivity of their sustained response to a prolonged stimulus. To test this hypothesis, we stimulated 21 striate cortical neurons with drifting sine-wave gratings and measured their orientation selectivity before, during, and after iontophoretic injection of 2-hydroxy-saclofen (2-OH-S), a selective GABAB-receptor antagonist. 2-OH-S reduced the orientation selectivity of six of eight simple cells by an average of 28.8 (+/- 13.2) % and reduced the orientation selectivity of eight of 13 complex cells by an average of 32.3 (+/- 27.4) %. As predicted, 2-OH-S reduced the orientation selectivity of the neurons' sustained response, but did not reduce the orientation selectivity of their onset transient response. 2-OH-S also increased the length of spike "bursts" (two or more spikes with interspike intervals < or = 8 ms) and eliminated the orientation selectivity of these bursts for six cells. These results are the first demonstration of a functional role for GABAB receptors in visual cortex and support the hypothesis that two GABA-mediated inhibitory mechanisms, one fast and the other slow, operate within the striate cortex to shape the response properties of individual neurons.  相似文献   

19.
Previous studies of the cortical input to the mammalian dorsal lateral geniculate nucleus (LGN) have identified a number of possible functions for the corticogeniculate pathway, including alteration of LGN spatial frequency selectivity and facilitation of both binocular interactions and orientation selectivity. These changes may be due to either a tonic or a phasic cortical facilitation or both. The temporal differences between each of these inputs suggests that their impact on LGN cell temporal tuning should be unique. To test this hypothesis, we reversibly blocked the visual cortex (VI) and measured the effects on several indices of the temporal properties of LGN cells, including peak frequency, bandwidth, and response phase. Macaque monkeys were anesthetized and paralyzed during single cell recording from the LGN while area VI was cryogenically deactivated. Single-cell responses were visually evoked with drifting, luminance-modulated, sine-wave gratings and discrete-Fourier analyzed. Cortical cooling produced statistically significant increases or decreases in response amplitude in 64% of cells recorded. In most cases, alterations in response amplitude occurred for stimuli that varied in spatial as well as temporal frequency. For those cells influenced by changes in stimulus temporal frequency, the majority showed changes over a broad range of frequencies. A minority of cells showed changes in either peak temporal tuning or temporal frequency bandwidth. Response phase angles for all temporal frequencies tested were unaffected by cortical cooling. Overall, these results suggest that the cortical input may alter the temporal response properties of LGN cells, perhaps by tonic, but not exclusively excitatory, corticofugal influences.  相似文献   

20.
A model for the development of spatiotemporal receptive fields of simple cells in the visual cortex is proposed. The model is based on the 1990 hypothesis of Saul and Humphrey that the convergence of four types of input onto a cortical cell, viz. non-lagged ON and OFF inputs and lagged ON and OFF inputs, underlies the spatial and temporal structure of the receptive fields. It therefore explains both orientation and direction selectivity of simple cells. The response properties of the four types of input are described by the product of linear spatial and temporal response functions. Extending the 1994 model of one of the authors (K.D. Miller), we describe the development of spatiotemporal receptive fields as a Hebbian learning process taking into account not only spatial but also temporal correlations between the different inputs. We derive the correlation functions that drive the development both for the period before and after eye-opening and demonstrate how the joint development of orientation and direction selectivity can be understood in the framework of correlation-based learning. Our investigation is split into two parts that are presented in two papers. In the first, the model for the response properties and for the development of direction-selective receptive fields is presented. In the second paper we present simulation results that are compared with experimental data, and also provide a first analysis of our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号